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Abstract
Real-world network configurations play a critical role in network

management and research tasks. While valuable, data holders of-

ten hesitate to share them due to business and privacy concerns.

Existing methods are deficient in concealing the implicit informa-

tion that can be inferred from configurations, such as topology

and routing paths. To address this, we present ConfMask, a novel

framework designed to systematically anonymize network topol-

ogy and routing paths in configurations. Our approach tackles key

privacy, utility, and scalability challenges, which arise from the

strong dependency between different datasets and complex rout-

ing protocols. Our anonymization algorithm is scalable to large

networks and effectively mitigates de-anonymization risk. More-

over, it maintains essential network properties such as reachability,

waypointing and multi-path consistency, making it suitable for a

wide range of downstream tasks. Compared to existing dataplane

anonymization algorithm (i.e., NetHide), ConfMask reduces ∼75%
specification differences between the original and the anonymized

networks.

CCS Concepts
• Networks→ Network privacy and anonymity; Topology anal-
ysis and generation; Network management; Data center networks;
Routing protocols; Network simulations; • Security and privacy
→ Security protocols; Privacy-preserving protocols; Pseudonymity,
anonymity and untraceability.
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1 Introduction

Real-world network configurations are crucial for many network

management tasks and network research. For example, sharing

network configurations could enable troubleshooting networks

collaboratively [38], optimizing network debugging and verification

algorithms [5, 16], and evaluating machine learning models [13].

Unfortunately, few configurations are publicly available and data

holders hesitate to share their configurations due to business and

privacy concerns.

Prior work [21, 31, 39, 43] use anonymization techniques to

hide sensitive information in configuration files before releasing

them to third-party or the public. For example, NetConan [21] has

identified sensitive attributes that can be directly retrieved from

configurations, such as IP addresses, AS numbers, and passwords,

and used different techniques (e.g., prefix-preserving, substitution)

to anonymize them. Unfortunately, it fails to consider two critical

types of sensitive information that can be indirectly inferred from

configuration files, including network topology and routing paths.
Network topology can disclose valuable business information

such as organization structure and scale. It can be reconstructed

by parsing the network interface information present in router and

host configurations. Similarly, routing paths could expose commu-

nication patterns [22, 23]. With router configurations, routing paths

can be extracted via simulation or emulation tools (e.g., GNS3 [34],

Batfish [16], and Minesweeper [5]).

In this work, we focus on anonymizing topology and routing

paths in configurations, to reduce concerns about configuration

owners publishing the data. Different from prior work (e.g., [19, 22,

23, 25, 26, 28, 30, 31, 36, 39, 45]), anonymizing these datasets poses

several key challenges:

• Multi-source de-anonymization: Prior efforts such as graph

anonymization [19, 25, 26, 45] and trace anonymization [28, 36]

focus on individual data fields such as graphs and IP addresses.

However, topology and routing paths are tightly coupled and

any modification made to one will inevitably impact the other.

This makes them vulnerable to multi-source de-anonymization

and requires more sophisticated anonymization techniques.

• Routing complexity: Anonymizing routing paths is very chal-

lenging due to the complexity of forwarding rules construction,

which could involve different routing protocols across multiple

nodes [16]. Prior work [22, 30] anonymizes routing behavior

by generating random data plane paths. While this approach

could obfuscate original routing paths, it may also result in dra-

matically different network behavior, limiting its use cases (e.g.,

protocol debugging).
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• Scalability-privacy tradeoff: It is difficult to effectively anony-

mize large networks. Complex anonymizing techniques might

take hours to anonymize even moderate-size networks, while

simple techniques yield poor privacy against re-identification at-

tacks. Striking a balance between privacy and scalability requires

not only algorithm optimizations but also theoretical guidelines.

The design of ConfMask tackles these challenges systematically,

which involves thoroughly exploring the trade-offs of different

anonymization techniques and rigorous theoretical analysis. Specif-

ically, we make three core contributions:

• Configuration utility formulation: We propose functional
equivalence that defines conditions to ensure the usability of

anonymized network configurations for a wide range of tasks.

To design an efficient anonymization algorithm, we further de-

fine strong functional equivalence conditions which are easy to

implement and provide sufficient conditions to imply functional

equivalence (with a formal proof). They are defined for IGP pro-

tocols (link-state-based e.g., OSPF and distance-vector-based e.g.,

RIP) and the BGP protocol.

• Consistent configuration anonymization workflow: We

propose a workflow that splits the configuration anonymiza-

tion process into separate stages: topology, route, and PII ano-

nymization add-ons. By incrementally anonymizing different

types of data, our proposed workflow ensures that the anony-

mized configurations can effectively defend against cross-data

de-anonymization. The workflow can also adapt different ano-

nymization algorithms per-stage.

• Efficient route anonymization algorithm: Our route ano-

nymization algorithm achieves high privacy and can scale to

large networks. Our key idea is to decompose complex global

route analysis into fast local table lookups that can be performed

on each router. For the utility goals, our algorithm converges

quickly, and for the anonymity goals, we use a randomized ap-

proach to reduce the risk of de-anonymization.

Our implementation of an end-to-end system ConfMask is, to the

best of our knowledge, the first prototype designed to anonymize

network topology and routing paths for the purpose of configura-

tion sharing. We evaluate ConfMask using eight networks, covering

different network scales, structures, and protocols. Our results show

that (1) ConfMask can preserve all host-to-host routing paths ex-

actly, while ensuring 𝑘-degree anonymity and route anonymity,

(2) ConfMask can anonymize large networks (with hundreds of

routers) in ∼6 minutes, small networks in seconds, injecting ∼10%
lines of configuration files.

Ethics: This work does not raise any ethical issues.

2 Background
In this section, we first highlight the necessity of sharing network

configurations with third-party clients in §2.1. Then we discuss

critical sensitive configuration information and the limitations of

existing anonymization approaches in §2.2.

2.1 Motivating Scenarios
Collaborative debugging: Small to medium-sized enterprises of-

ten rely on community forums such as StackExchange and mailing

lists for network operations due to limited budgets. They usually

post only partial configurations online [2–4, 17] to protect the

private information of their companies. However, because of insuf-

ficient information provided on network configurations, the reso-

lution and response time of such forums are often poor. A recent

survey [38] found that it takes on average a week for collaborators

to understand a question, and 81% of the questions require multiple

iterations to fill the information gap. Disclosing the full configu-

rations of a network would make collaborative debugging much

more efficient. Besides efficiency issues, attacks such as topology

inference can be launched even with only partial configurations,

revealing confidential information [20, 44]. Larger language models

like ChatGPT have proven useful for network troubleshooting [13].

However, any information included in the chat transcript, such as

sensitive network configurations, can be disclosed to many people

(e.g., affiliates, vendors, service providers) according to OpenAI [35].

Therefore, collaborative debugging demands a privacy-preserving

approach to share the full configurations of a network.

Sharing configuration for research purposes: Real-world net-

work configurations are crucial for network research, such as net-

work verification [5, 16] and evaluating machine learning mod-

els [13]. However, only a limited number of real network configura-

tions are made public (e.g., by Internet2 [1]) for research purposes

due to concerns about confidential (commercial) and private (per-

sonal) information. While TopologyZoo [24] contains hundreds of

topologies from internet measurements, it does not include realis-

tic network configurations that can be studied. NetComplete [15]

provides a synthetic way to generate configuration files, but its

predefined rules limit the flexibility in routing utility specifications.

2.2 Threat Model and Sensitive Information
Although network configurations are valuable for various purposes,

data holders are often reluctant to share the original configurations

due to potential violations of privacy, company policy, and legal

regulations in security threats.

Threat model: Based on the motivating scenarios above, suppose

that network owner𝐴 shares some configurationswith a third-party

𝐵, for either troubleshooting or research purposes. we consider a

possible adversary 𝐵 to be able to: (1) read configuration files of the

shared network, (2) gain partial knowledge of problematic or ex-

pected behavior of the original network in the debugging scenario,

(3) access any existing network analysis tools, e.g., simulation and

verification. However, we do not expect the adversary to have direct
access to the physical network and perform actions such as ping
or traceroute, since the owner of the network is supposed to be

anonymous throughout the sharing process. Our main target is to

protect the privacy of the network owner 𝐴, therefore, defending

against network attacks is not a typical use-case of our system.

Scope of sensitive information:While configuration files contain

a wealth of information, our focus in this paper is on the topology

and routing paths of networks.

• Network topology: Network topology includes the network

design details and may reveal confidential business information

such as enterprise scale, organizational structure, and growth

rate. It can be inferred by analyzing the interface settings across

all configurations. Routers and hosts are represented by nodes in

the topology graph, and edges are added by identifying interface

pairs that share the same prefix.
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• Routing paths: The data plane of a network determines how

packets are forwarded from one node to another, and it is a

sensitive aspect since it may reveal traffic patterns, relations

between different parts of an organization, etc. The data plane

can be extracted from the configuration files via simulation tools

such as Batfish [16], or by utilizing a virtual environment to run

the configuration [34].

Non-goals: At this stage, we do not consider the number of routers

as a private attribute. The number of routers does not necessarily

link to the identity or privacy of its owner, for example, numerous

small to medium-sized enterprises contain about tens of routers. As

mentioned above, the traffic patterns and link structure configured

in these routers are the identifiable attributes to conceal, to avoid

being cross-referenced and leaking critical information about the

enterprise. Without further knowledge of the type of each router,

having only the number of routers in a company is insufficient to

estimate the network scale or the number of users. For instance, the

size of the FIB may vary from 4k to 4M on different routers. Still,

we note that the workflow we present later in the paper can be ex-

tended to adapt anonymization algorithms that alter the number of

routers [41], which may be useful for large-scale networks. We will

leave them for future works and discuss them in §9. Also, common

vulnerabilities and exposures (CVE) like router vendors and oper-

ating systems are beyond the scope of this work, and we suggest

maintaining them separately before and after anonymization.

2.3 Limitations of Existing Approaches

Graph anonymization: Existing graph anonymization algorithms [8,

9, 11, 19, 25, 26, 45, 46] are potentially capable of anonymizing net-

work topology, but they are primarily designed for social network

scenarios and lack protection for information in computer network

contexts, such as IP addresses and routing behaviors.

Data plane anonymization: Prior data plane anonymization tech-

niques either modify the packet forwarding behavior or provide

a modified topology with a programmable data plane [22, 30, 42]

to obfuscate the routing paths. Nevertheless, they may alter the

network’s functionality, making the anonymized configurations

useless even for legitimate purposes such as troubleshooting.

Configuration anonymization: Existing approaches to config-

uration anonymization focus on protecting personal identifiable
information (PII), particularly IP addresses [21, 31, 39, 43], but they

fail to protect network topology and routing paths.

Motivation Case Study: Lastly, we provide the case study of a

concrete trouble-shooting example. Ideally, the misconfiguration

problem should remain solvable after anonymization, but the state-

of-the-art data plane anonymization approach (i.e., NetHide [30])

fails to achieve the desired utility.

Figure 1 illustrates a sub-topology of a FatTree-04 network (Net

H in Table 2) containing the root cause of the following issue caused

by a misconfiguration: users are experiencing high network delay

and high packet loss rate from ℎ𝐴 to ℎ𝐵 . To solve the performance

degrading issue, the network configurations (Listing 1 and 2) are

anonymized and shared with an experienced engineer. The fake

link (𝑒3−1, 𝑎𝑔𝑔1−1) was added by NetHide for routing anonymity.

The root cause of the issue is that router 𝑐2 is mistakenly con-

figured to mark inbound traffic from management subnet 𝑎𝑔𝑔3−1

Figure 1: Topology and problem description in the case study

as low-priority, which instead should be high-priority. Traffic with

a priority label (e.g., DSCP) is propagated to 𝑎𝑔𝑔1−1, where the

low-priority outbound queue on 𝑎𝑔𝑔1−1 is suffering from conges-

tion. With the NetHide version of the anonymized configuration in

troubleshooting, the examined configurations only contain (𝑒3−1,
𝑎𝑔𝑔1−1, 𝑒1−0) on the trace path. The visibility of the root cause is

blocked by such anonymization, leading the engineer to come up

with impractical solutions such as setting the traffic priority on a

fake interface. Therefore, a better configuration anonymization so-

lution should preserve the network trace paths between hosts and

maintain the Waypoint property (𝑒3−1, 𝑎𝑔𝑔3−1, 𝑐2, 𝑎𝑔𝑔1−1, 𝑒1−0) in
this case, allowing for precise configuration diagnosis.

1 interface GigabitEthernet1 /0/13

2 ip address 10.25.17.25/31

3 description to-AGG3 -1

4 traffic -policy mark_agg31_high_priority inbound

5 !

6 traffic classifier is_mgmt_traffic

7 if-match any

8 !

9 traffic behavior remark_mgmt_dscp

10 remark dscp af31

11 !

12 traffic policy mark_agg31_high_priority

13 classifier is_mgmt_traffic behavior remark_mgmt_dscp

14 !

Listing 1: QoS-related configuration of router 𝑐2

1 interface GigabitEthernet1 /0/8

2 ip address 10.25.7.12/31

3 description to-E1 -0

4 trust dscp

5 qos schedule -profile default

6 !

7 qos schedule -profile default

8 qos wrr 1 to 7

9 qos queue 2 wrr weight 10

10 qos queue 7 wrr weight 90

11 !

Listing 2: QoS-related configuration of router 𝑎𝑔𝑔1−1

3 Problem Formulation
Our goal is to anonymize network configurations to safeguard

network topology and routing information, and cater to various use

cases. We start by defining the problem of network configuration

anonymization (§3.1). Then we use several illustrative examples

(§3.2) to understand the key challenges (§3.3).

3.1 Terminology and Definitions
Terminology:We introduce the notations to formally represent

network configuration 𝐶𝐹𝐺 = (𝐺, 𝐷𝑃), as shown in Table 1. First
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Network configuration 𝐶𝐹𝐺 = (𝐺, 𝐷𝑃) Network anonymization �𝐶𝐹𝐺 = A(𝐶𝐹𝐺) = (𝐺, 𝐷𝑃)

𝑟 ∈ 𝑅, ℎ ∈ 𝐻 routers & hosts �̂� = ∪𝑟 ∈𝑅A(𝑟 ), 𝐻 = ∪ℎ∈𝐻A(ℎ) anonymized routers & hosts
𝑣 ∈ 𝑉 = 𝑅 ∪ 𝐻 network devices 𝑉 = �̂� ∪ 𝐻 anonymized network devices
𝐸 = (𝐸𝑅 ⊆ 𝑅 × 𝑅) ∪ (𝐸𝐻 ⊆ 𝑅 × 𝐻 ) links �̂� = (𝐸𝑅 ⊆ �̂� × �̂�) ∪ (𝐸𝐻 ⊆ �̂� × 𝐻 ) anonymized links
𝐺 = (𝑉 , 𝐸) topology 𝐺 = (𝑉 , �̂�) anonymized topology
𝑝 ∈ 𝐷𝑃 data plane 𝐷𝑃 = A(𝐷𝑃) anonymized data plane

Functional
equivalence

𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺

∃𝑓 injective, s.t.(
𝑓 (𝑟 ) ∈ A(𝑟 ), ∀𝑟 ∈ 𝑅

)
∧

(
𝑓 (ℎ) ∈ A(ℎ), ∀ℎ ∈ 𝐻

)
; topology preservation(

(ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃
)
⇐⇒

(
(ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ̂𝑑 ) ∈ 𝐷𝑃

)
,

where

(
ℎ̂𝑠 = 𝑓 (ℎ𝑠 ), ℎ̂𝑑 = 𝑓 (ℎ𝑑 ), 𝑟𝑖 = 𝑓 (𝑟𝑖 ), ∀𝑖

)
.

route equivalence

Privacy 𝑅 is 𝑘-anonymized on deg𝑅 (𝑟 ); 𝑘-topology anonymity
∀𝑝1 ∈ 𝐷𝑃 , ∃𝑝2, · · · , 𝑝𝑘 ∈ 𝐷𝑃 , s.t. 𝑝𝑖 ∼ 𝑝1 for all 𝑖 = 2, · · · , 𝑘 . 𝑘-route anonymity

Table 1: Technical cheat sheet

we denote the network topology by 𝐺 = (𝑉 , 𝐸), where 𝑉 = 𝑅 ∪ 𝐻
are routers (𝑅) and hosts (𝐻 ) in the network, and 𝐸 = (𝐸𝑅 ⊆ 𝑅 ×
𝑅) ∪ (𝐸𝐻 ⊆ 𝑅 ×𝐻 ) are the connections between routers (𝐸𝑅 ) and

between host-router pairs (𝐸𝐻 ). Then we denote the data plane by

𝐷𝑃 , which is the collection of all host-to-host routing paths in the

network. Each routing path 𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) is a sequence of
nodes in 𝑉 , through which packets are forwarded from ℎ𝑠 to ℎ𝑑 .

Our goal is to generate an anonymized version of 𝐶𝐹𝐺 , denoted

as �𝐶𝐹𝐺 = (𝐺, 𝐷𝑃). The components are obtained through an ab-

stract anonymization mapping A : (𝐺 ↦→ 𝐺) × (𝐷𝑃 ↦→ 𝐷𝑃). The
network topology is anonymized as𝐺 = A(𝐺) = (𝑉 = (�̂�∪𝐻 ), �̂� =

(𝐸𝑅 ∪ 𝐸𝐻 )), where

�̂� = A(𝑅) = ∪𝑟 ∈𝑅A(𝑟 ), 𝐻 = A(𝐻 ) = ∪ℎ∈𝐻A(ℎ),

and links can be added between network devices in the 𝑉 . The

anonymized data plane 𝐷𝑃 = A(𝐷𝑃) consists of all routing paths
in the anonymized network, and specifically each routing path

𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃 will be anonymized into the set

A(𝑝) = {�̂� = (ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ̂𝑑 ) ∈ 𝐷𝑃 ; ℎ̂𝑠 ∈ A(ℎ𝑠 ),

ℎ̂𝑑 ∈ A(ℎ𝑑 ), 𝑟𝑖 ∈ A(𝑟𝑖 ),∀𝑖 ∈ {1, · · · , 𝑛}} ⊆ 𝐷𝑃.

Problem:We require privacy on each component of𝐶𝐹𝐺 . At a high

level, the anonymization mappingA should effectively conceal the

original topology and routing paths, preventing an adversary from

identifying them from the anonymized version (Definition 3.1 and

3.2). Meanwhile, �𝐶𝐹𝐺 should satisfy the usability conditions to

preserve functional features of the network (Definition 3.3).

Anonymity: We characterize the privacy of 𝐺 and 𝐷𝑃 by iden-

tifying key attributes and preventing them from being uniquely

identified. Note that privacy definitions against membership dis-

closure (e.g., differential privacy [29]) are not applicable in this

case, as they aim to prevent an adversary from learning whether

a specific record is included in the data [10]. Instead, we aim to

prevent the disclosure of sensitive attributes, which is why we use

𝑘-anonymity [40]. By guaranteeing that each data record is indis-

tinguishable from at least 𝑘−1 other records, 𝑘-anonymity provides

necessary privacy protection.

• Topology anonymity: The key attributes of the topology 𝐺

of a network are the degrees of its nodes [25]. For each router

𝑟 ∈ 𝑅, let deg𝑅 (𝑟 ) denote the number of connections between 𝑟

and some other router 𝑟 ∈ 𝑅 \ {𝑟 }.
Definition 3.1. 𝐶𝐹𝐺 satisfies 𝑘-topology anonymity if the col-

lection of routers 𝑅 is 𝑘-anonymized on deg𝑅 (𝑟 ).
• Route anonymity: We anonymize the data plane to conceal

the routing behaviors of a network, whose key attributes are

the host connections with the same ingress and egress routers.

Let 𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) and 𝑝′ = (ℎ′𝑠 , 𝑟 ′1, · · · , 𝑟
′
𝑛′ , ℎ

′
𝑑
) be two

routing paths, and we say 𝑝 ∼ 𝑝′ if and only if 𝑟1 = 𝑟 ′
1
and

𝑟𝑛 = 𝑟 ′
𝑛′ , i.e., they share the same ingress and egress routers.

Definition 3.2. 𝐶𝐹𝐺 satisfies 𝑘-route anonymity if for each 𝑝1 ∈
𝐷𝑃 , there exist at least 𝑘−1 other routing paths 𝑝2, · · · , 𝑝𝑘 ∈ 𝐷𝑃 ,
such that 𝑝𝑖 ∼ 𝑝1 for all 𝑖 = 2, · · · , 𝑘 .

Usability:Anonymization techniques (e.g., NetHide [30]) employed

to obfuscate original network datamay inevitably introduce changes

that can potentially impact the utility of the data. To ensure that

the resulting �𝐶𝐹𝐺 is useful for a broad range of tasks, we aim to

achieve functional equivalence (denoted by 𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺) which

is defined as follows:

Definition 3.3. �𝐶𝐹𝐺 is functionally equivalent to 𝐶𝐹𝐺 , if:

• (Topology preservation) All routers, hosts, and links originally

in 𝐺 remain in 𝐺 .

• (Route equivalence) 𝐷𝑃 and 𝐷𝑃 are identical with respect to

routing behaviors between hosts in 𝐺 .

Functional equivalence is useful since it necessitates an if and only if
condition, which ensures that we do not make over-approximations

that can result in falsely identified bugs that do not exist in the orig-

inal network, nor do we make under-approximations that can cause

us to overlook property violations in the original network. More-

over, functional equivalence preserves important routing utility

properties, including reachability, path lengths, black holes, multi-

path consistency, waypointing, and routing loops [6]. The preser-

vation of these properties guarantees the utility of the anonymized
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(a) The original topology and the

fake edges added (dashed red lines)

(b) Enable OSPF on the fake inter-

faces with default cost

(c) Set OSPF cost on the fake edges

to be sufficiently large

(d) Set OSPF cost to match the low-

est cost; the blue arrows represent

the PBR policy

Figure 2: The example network

network, which will be further explained in §5.1 and rigorously

stated and proved in Appendix B.

3.2 Strawman Approaches and Limitations

Example Network: Consider the enterprise network illustrated in

Figure 2a with four routers. The routers 𝑟1, 𝑟2, and 𝑟4 are connected

to the computers in their respective departments, represented by

ℎ1, ℎ2, and ℎ4, respectively. All inter-router interfaces have OSPF

enabled in the same area, and each router advertises the prefix of

the respective host. Interfaces connecting (𝑟1, 𝑟3) and (𝑟3, 𝑟2) are
configured with OSPF cost 1 instead of the default cost of 10.

The original configurations of the network reveal the topology

and routing paths among different departments. For instance, pack-

ets fromℎ1 toℎ4 are only reachable through path (ℎ1, 𝑟1, 𝑟3, 𝑟2, 𝑟4, ℎ4),
which may expose confidential inter-departmental business or geo-

relationships and compromise privacy. To anonymize this network,

we consider a strawman approach which generates a network con-

figuration with sensitive information hidden but utility preserved.

Step 1. Add fake edges: The obvious way to conceal topology is

to add fake links to the network and assign proper IP addresses,

as depicted by the dashed edges in Figure 2a. The fake links make

it difficult to reconstruct the topology graph by simply excluding

the edges with no IP address for each end. However, the fake inter-

router interfaces can be easily identified since they do not have

OSPF configuration.

Step 2. Configure protocol: Even with the interface IPs added

to the routing protocol, there remains the question of fake edge

costs, which affect the routing behaviors. Naturally, we have the

following three naive options to set OSPF cost.

(i) Use default cost: As shown in Figure 2b, link state informa-

tion propagates through the new links. Although the topology

is harder to reconstruct, the shortest-path-tree (SPT) algorithm

used by OSPF will migrate the routing path between ℎ1 and ℎ4
from (ℎ1, 𝑟1, 𝑟3, 𝑟2, 𝑟4, ℎ4) to (ℎ1, 𝑟1, 𝑟4, ℎ4), violating routing-level

equivalence above.

(ii) Set a large cost: Another option is to set the cost on all fake edges

to a sufficiently large value so that routers always have the least

priority on new links (Figure 2c). This approach achieves routing

equivalence by exactly preserving routing paths, but no traffic will

fly through the fake edges. Applying the SPT calculation precisely

identifies these links.

(iii) Match the lowest cost: The third option is to set the cost of new

links to match the original shortest path. As shown in Figure 2d,

this change can import traffic into fake edges. For example, traffic

between ℎ1 and ℎ4 is now split between (ℎ1, 𝑟1, 𝑟3, 𝑟2, 𝑟4, ℎ4) and
(ℎ1, 𝑟1, 𝑟4, ℎ4). However, this modification changes the forwarding

behavior between (ℎ1, ℎ4) from a single path to multiple paths.

Step 3. Fix the original routing: To move traffic from the fake

edges back to its original path, we canmanually adjust each hop. For

instance, we can apply policy-based routing (PBR) to hardcode the

next hop on each router for each destination host. As an example,

the blue arrows in Figure 2d represent the PBR policy. On 𝑟1, we

can match all packets destined for ℎ2 or ℎ4 and forward them to 𝑟3,

restoring the routing behaviors.

Limitations of the strawman approach: The routing fix above
has significant limitations. Firstly, PBR supports only a single next-

hop and therefore cannot achieve routing-level equivalence inmany

scenarios, such as load-balancing paths. Secondly, the configura-

tion lines of PBR leave explicit routing information of the original

network. Lastly, a network simulation tool such as Batfish [16] can

be used to identify and remove ghost links from the topology, thus

revealing the original network topology.

3.3 Challenges

From the example above, we observe that network configuration

anonymization poses three unique challenges compared to prior

works such as network trace anonymization [28, 32, 36] and graph

anonymization [19, 25, 26, 45].

C1. Topology and routing are tightly coupled: They are cou-

pled in the sense that a single modification made to one will usually

impact the other. Furthermore, de-anonymization of one data type

is possible by referring to the other. As demonstrated in the straw-

man, the anonymized network topology can be inferred through

unconfigured interfaces, shortest path tree, and routing simulation.

C2. Routing complexity makes utility preservation difficult:
A small change to a configuration file could affect the routing

behavior of multiple components, as demonstrated in Step 2 of the

strawman. This results in two issues: (i) some seemingly possible

anonymization solutionswill negatively impact the utility, as shown

in Step 3; (ii) a solution that works for one type of routing protocol

(e.g., BGP) may not work for other types of protocols (e.g., OSPF).
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Figure 3: The anonymization workflow

C3. Combined effects make anonymizing large networks
even more challenging: The previous two challenges are com-

pounded for large networks. Large networks have more nodes,

edges, and routing paths and are typically configured with complex

routing mechanisms such as load balancing and aggregation. Con-

sequently, solutions that work for small networks may not scale

well to large networks.

4 ConfMask Design
In this section, we present the design of ConfMask, which can ef-

fectively anonymize network configurations while achieving func-

tional equivalence, including the overall workflow and each phase

of anonymization.

4.1 Anonymization Workflow
Our anonymization workflow design is illustrated in Figure 3, con-

sisting of a preprocessing step, two major anonymization steps

(topology anonymization and route anonymization), and other add-

on steps of existing anonymization algorithms. The preprocessing

step computes the topology and routes of the original network as

the baseline. Step 1 (§4.2) modifies the configuration files to gener-

ate the anonymized network topology in intra-AS level and inter-AS

level. Step 2 (§4.3) then tackles route processing, which is further

divided into two parts: Step 2.1 (§5.1) ensures route equivalence

and Step 2.2 (§5.3) anonymizes the routes in the new network.

The order in which we anonymize topology and routing be-

havior is essential. It is safe to modify the routing behavior after

fixing the topology but not vice versa. If we modify the topology

after the routes have been fixed, then the new links added to the

topology would have no impact on the routing behavior, thus not

containing any traffic. This would make them suspicious and easy

to de-anonymize.

4.2 Topology Anonymization
The topology of a network is regarded as a simple graph that con-

sists of routers 𝑅 and the links between routers 𝐸𝑅 (we exclude

hosts during topology anonymization). We adopt an existing graph

anonymization algorithm to generate a fake topology and modify

the configuration files accordingly. Existing graph anonymization

algorithms fall into two types: those that preserve the same set

of nodes in the graph and only modify edges [25], and those that

add virtual nodes during anonymization [41]. Both types of algo-

rithms automatically fulfills the topology preservation requirement

in functional equivalence. We choose the first type of algorithm

as it results in an anonymized topology that is more similar to the

original network, but we note that the second type is applicable to

our workflow as well.

For any new edge generated by the graph anonymization algo-

rithm, we add a new link to the network by modifying the con-

figuration files of the corresponding routers (details in §6). There

are hardly any constraints for applying this method, except for

maybe the hardware capabilities such as the number of interfaces

on a router. But the highest node degree remains unchanged in this

algorithm, and we have never encountered a case where we are

unable to further add interfaces to a router in ConfMask.

BGP is a special case where we need to view the topology in

two levels: the routers in each autonomous system (AS) form a

simple graph, and on top of that each AS is treated as a (super)node

so the network of ASes is treated as a simple graph as well. In

particular, we adopt the topology anonymization algorithm for

each AS independently, adding edges using the aforementioned

strategy until the definition of topology anonymity within each

AS is satisfied. After that, we anonymize the network of ASes

by viewing two ASes as interconnected as long as one of their

border routers is interconnected. A new edge between two ASes

is implemented by adding an edge between two randomly chosen

border routers in the two ASes respectively.

Our approach achieves topology preservation by retaining the

existing nodes and edges in the new topology. We also ensure that

only new configuration lines are added without deleting any exist-

ing configurations. However, adding links to the current network

topology can affect the routing behavior of the network, potentially

violating route equivalence.

Routing impact: There are two types of changes that could af-

fect the original routing paths. The first type involves modifying

existing next hops to fake interfaces. For example, new route ad-

vertisements can be sent through the fake links, possibly causing

the fake interfaces to be selected as the next-hop interface in the

routing table. The second type of change involves altering route

preferences through original neighbors. For example, the fake links

could change the preference order (e.g., OSPF cost, BGP local pref-

erence) of the routes learned from real neighbors.

Figure 4a is part of a BGP example network, and Figure 4b shows

the corresponding network after anonymizing topology with 𝑘 = 3.

Destination ℎ5 has three candidate paths on 𝑟1: ➀ is currently

selected as the best path and used for forwarding, ➂ is the second-

best path since the route decision process follows a shorter AS path

with higher priority. We will discuss in §4.3 how to fix the incorrect

paths (e.g., ➀), thereby achieving route equivalence.

4.3 Route Processing
Route processing involves two steps: (1) fixing changed routes to

achieve route equivalence, and (2) and anonymizing original routes

to achieve 𝑘-route anonymity. In this section, we focus on the first
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(a) Example network (b) 3-topology anonymity (c) Trace paths for strawman 2 (d) Local FIB lookup solution

Figure 4: Example network anonymization and fixing its fix paths to achieve route equivalence

step by elucidating the challenges of correctly filteringwrong routes

and presenting our solution.

Strawman 1: Simply dropping all incoming host prefixes on ev-

ery fake interface can correctly fix changed routes. However, it

is vulnerable to de-anonymization due to the unified pattern on

each router. Listing 3 is a configuration example for Cisco IOS that

filters out every host on 𝑟2 using the distribute-list filtering

feature. The lines 2–5 are newly added on each router for each fake

neighbor. An adversary can potentially identify the fake interfaces

that always bind to a minimal subset of dropped prefixes shared by

all routers.

1 router bgp 20

2 neighbor {r5} distribute -list RejPfxs in Et0/2

3 neighbor {r4} distribute -list RejPfxs in Et0/3

4 ip prefix -list RejPfxs seq 5 deny {h1-prefix}

5 ip prefix -list RejPfxs seq 10 deny {h4-prefix}

6 ip prefix -list RejPfxs seq 15 deny {h5-prefix}

Listing 3: Distribute-list configuration example

Strawman 2: Consider filtering only the host prefixes for which

traffic passes through on each fake interface. This breaks the unified

pattern of the approach above. To do this, we can use a simulation

tool to extract the data plane from the configuration files. For each

host connection ℎ𝑎 → ℎ𝑏 , we run traceroute(ℎ𝑎, ℎ𝑏 ) before and
after topology anonymization and identify the first different hop

𝑟𝑖 that is closest to ℎ𝑏 (i.e., 𝑟𝑖+1, · · · , 𝑟𝑘 are part of an original path

from ℎ𝑎 to ℎ𝑏 but 𝑟𝑖 is not). We add a route filter to the interface

𝑖𝑛𝑡𝑖,𝑖+1 connecting 𝑟𝑖 and 𝑟𝑖+1 to filter out routes whose destination
IP contains the host ℎ𝑏 .

For instance in Figure 4b, traceroute(ℎ1, ℎ5) would result in the
routing path (ℎ1, 𝑟1, 𝑟5, ℎ5), andwe compare it with the original path

(ℎ1, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, ℎ5). 𝑟1 is the first different hop closest to ℎ5, and

we fix this by filtering out the prefix ofℎ5 on 𝑖𝑛𝑡1,5. The next-hop for

ℎ5 should then fall to 𝑟2, and we need to check against the new data

plane if the new path matches the original ones. However, due to

the protocol dynamics nature of BGP, which always selects a local

equilibrium rather than a global optimum [18], simply removing

the filtered route from the data plane is not sufficient to infer the

new data plane. Therefore, we need to use a simulation tool to

obtain the modified configuration to extract the new data plane.

We can repeat the re-simulation and filtering process until the

resulting data plane is the same as the original network. As shown

in Figure 4c, this approach fixes path inconsistencies one hop at

a time, and for the ℎ1 → ℎ5, it takes four iterations to correct the

path. Although this approach is less vulnerable, re-simulation and

FIB lookup jobs complexity makes the approach impractical.

Our approach: Note that the filters added in Strawman 1 are

based solely on local information in the configuration files, such

as which interfaces are fake. While this approach is simple, it

lacks the ability to target some specific routes. Strawman 2, on

the other hand, demonstrates that by combining local information

with route information, it suffices to add filters only to certain

destinations on a fake link. However, in the second strawman ap-

proach, the process of traceroute is time-consuming. If we de-

compose a traceroute request into a chain of FIB lookups, we

observe that there are many unnecessarily duplicated FIB lookups

in the second approach due to multiple host pairs sharing the same

part of the path. For example, in the first iteration shown in Fig-

ure 4c, ℎ5 has been looked up in the same FIB twice on 𝑟5, once

during traceroute(ℎ1, ℎ5) = (ℎ1, 𝑟1, 𝑟2, 𝑟5, ℎ5) and the other dur-

ing traceroute(ℎ3, ℎ5) = (ℎ3, 𝑟3, 𝑟5, ℎ5).
Based on this observation, our final solution (§5) aims to balance

between the two approaches to achieve an acceptable complex-

ity by significantly reducing the number of time-consuming jobs

without forming patterns in the configurations that may lead to

de-anonymization.

5 Route Equivalence and Anonymization
In this section, we propose strong functional equivalence conditions

(§5.1) for specific types of routing protocols and prove that they are

sufficient to infer functional equivalence. Following the conditions,

we design algorithms to achieve route equivalence (§5.2) and 𝑘-route
anonymity (§5.3). Finally, we analyze the complexity complexity of

our algorithms in §5.4.

In §4 we already restrict our solution to only generating fake

hosts and fake linkswithout adding any fake routers, so thatA(𝑅) =
𝑅. As for the hosts, regardless of the fake hosts added, we require

that each host ℎ ∈ 𝐻 corresponds to a unique real host ℎ̂ ∈ A(ℎ),
which we denote by A0 (ℎ) = ℎ̂.

5.1 Strong Functional Equivalence
As our definition of functional equivalence is based on the routes

between any two hosts, it is not straightforward to find an effi-

cient solution that guarantees this requirement. Alternatively, we

propose a set of conditions that are sufficient to imply functional
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equivalence while being easy to evaluate and implement, which we

call strong functional equivalence (SFE) conditions. By embed-

ding SFE conditions into the algorithm, we can guarantee that the

anonymized network we generate automatically fulfills functional

equivalence with the original network. The SFE conditions would

vary for different types of routing protocols, as we will state next.

Distance-vector protocols: In distance-vector routing protocols

such as RIP and EIGRP, each router advertises its distances to its

neighbors and receives the advertisements from its neighbors until

convergence. In order to guarantee functional equivalence, we thus

require each routing path in 𝐶𝐹𝐺 to be imported in �𝐶𝐹𝐺 , and each

advertisement learned by a router in�𝐶𝐹𝐺 to be a valid advertise-

ment in 𝐶𝐹𝐺 as well. This invokes the following SFE conditions:

(1) If 𝑒 = (𝑟, 𝑟 ′) ∈ 𝐸𝑅 , then we require �̂� = (A(𝑟 ),A(𝑟 ′)) ∈ A(𝐸𝑅),
with �̂� having the same link properties as 𝑒 . Similarly, if 𝑒 =

(𝑟, ℎ) ∈ 𝐸𝐻 , then we require �̂� = (A(𝑟 ),A0 (ℎ)) ∈ A(𝐸𝐻 ), with
�̂� having the same link properties as 𝑒 .

(2) If any route is imported from some neighbor �̂�
′ ∈ A(𝑉 ) to the

routing table of �̂� ∈ A(𝑉 ), there must exist 𝑣 ∈ 𝑉 and 𝑣 ′ ∈ 𝑉 ,
such that �̂� = A(𝑣), �̂� ′ = A(𝑣 ′), and 𝑣 ′ is some neighbor of 𝑣 .

The first condition ensures that all the links in the original network

still exist as candidates for forming routing paths in the anony-

mized network, and that the preference for each of these candidates

remains unchanged. Yet since we are adding new links, there may

be additional paths that are preferred over these candidates. The

second condition then ensures that no additional routing paths

will be accepted in the anonymized network, so that functional

equivalence would hold.

BGP: The SFE conditions for BGP are defined based on those for

distance-vector protocols. First, each AS must satisfy the SFE con-

ditions for distance-vector protocols to maintain the routes within

each AS. On top of that, the network of ASes must also satisfy the

SFE conditions for distance-vector protocols, so that the inter-AS

routing also remains unchanged to fulfill functional equivalence.

Link-state protocols: The advertisement of a link-state protocol

such as OSPF sends the neighboring relation across the network.

Each router learns about the network topology from the adver-

tisement of its neighbors and computes the routing path with the

lowest cost. In order to guarantee functional equivalence, we thus

require each routing path in 𝐶𝐹𝐺 to remain of lowest-cost in �𝐶𝐹𝐺 .

This invokes the following SFE conditions:

(1) If 𝑒 = (𝑟, 𝑟 ′) ∈ 𝐸𝑅 , then we require �̂� = (A(𝑟 ),A(𝑟 ′)) ∈ A(𝐸𝑅),
with cost (̂𝑒) = cost(𝑒). Similarly, if 𝑒 = (𝑟, ℎ) ∈ 𝐸𝐻 , then we

require �̂� = (A(𝑟 ),A0 (ℎ)) ∈ A(𝐸𝐻 ), with cost (̂𝑒) = cost(𝑒).
(2) If �̂� = (̂𝑣, �̂� ′) ∈ A(𝐸) but 𝑒 = (A−1 (𝑣),A−1 (𝑣 ′)) ∉ 𝐸, then

we require either cost (̂𝑒) > min_cost(A−1 (𝑣),A−1 (𝑣 ′)), or
cost (̂𝑒) = min_cost(A−1 (𝑣),A−1 (𝑣 ′)) but �̂� is rejected. Here
min_cost(𝑣, 𝑣 ′) denotes the minimum link cost between 𝑣, 𝑣 ′.

Similar to the conditions for distance-vector protocols, the first

condition ensures that all the links in the original network still

exist as candidates for forming routing paths in the anonymized

network, and that the costs of these candidates remain unchanged.

Yet since we are adding new links, these may create new paths with

lower costs. The second condition then ensures that shorter paths

will not exist, and if equal-cost shortest paths are generated, we

reject them so that the data plane will be fixed back to the original.

We claim that the SFE conditions defined above imply functional

equivalence (Theorem A.4, Appendix A). Thus by fulfilling the SFE

conditions, our algorithm can produce anonymized networks that

automatically satisfy functional equivalence.

As the topology preservation requirement is already satisfied

during topology anonymization in §5.3, we introduce our approach

to further satisfy the route equivalence requirement by fulfilling the

SFE conditions.

5.2 Route Equivalence Algorithm
In this section, we present our algorithm to fulfill the SFE conditions.

We satisfy the first condition for both types of routing protocols

by ensuring that no existing configuration is modified or deleted,

so that any link in the original network remains the same in the

modified network. We also fulfill the second condition by only

adding new lines to the configuration files. For distance-vector

protocols, we add filters to remove routing table entries that violate

the second condition. For link-state protocols, we first set the cost

of each fake link to the minimum cost between the two routers

in the original network, such that cost((𝑟, 𝑟 ′)) = min_cost(𝑟, 𝑟 ′).
Then, we can satisfy the second condition by adding filters in the

same way as distance-vector protocols.

Algorithm 1 Route Equivalence Algorithm

Input: 𝐶𝐹𝐺 : the original network;�𝐶𝐹𝐺 : the intermediate network

after topology anonymization

Output: Functionally equivalent �𝐶𝐹𝐺
1: repeat
2: for ⟨̃𝑟, ℎ̃𝑑 , 𝑛𝑥𝑡⟩ ∈ 𝐷𝑃 do
3: if 𝑛𝑥𝑡 ∉ 𝐷𝑃 [̃𝑟, ℎ̃𝑑 ] and (̃𝑟, 𝑛𝑥𝑡) ∉ 𝐸 then
4: Add filter on �̃� to deny ℎ̃𝑑 from 𝑛𝑥𝑡

5: until SFE conditions are fulfilled

As shown in Algorithm 1, we take the intermediate �𝐶𝐹𝐺 after

topology anonymization, and apply an iterative approach similar

to strawman 2 to fix the difference between the original data plane

𝐷𝑃 and the intermediate data plane 𝐷𝑃 . Only the routing paths

that involve fake links need to be considered in this step, so in

each iteration, we look up every host destination on every router

and deny the routing paths pointing to some fake neighbor as the

next hop. Note that this approach may take multiple iterations to

converge, as routers do not have a global view of the network when

choosing their next hop. Therefore, adding filters in one iteration

does not guarantee that the correct next hop will be selected in the

succeeding iteration.

However, compared with strawman 2, our approach can signifi-

cantly reduce the number of iterations needed for convergence. This

is because strawman 2 addresses only the wrong next-hops from a

source host to a destination host, leaving some wrong next-hops

on partial paths from routers to the destination host unchanged.

These next-hops may still be selected in further iterations with

strawman 2. On the other hand, our algorithm examines all routing

table entries of each router within each iteration, thus fixing as

least at many next-hops as strawman 2.

Compared with the strawman approaches, our approach has

the following trade-offs: we looked up hosts on all routers, while

some of them do not necessarily appear in any path targeting the
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specified host. However, this overhead is relatively small since our

approach converges quicker and has fewer iterations, resulting in a

significantly lowered total time (§7).

5.3 Route Anonymity Algorithm
To achieve our definition of route anonymity in §3.1, we first add 𝑘−
1 copies for every host (i.e. same configuration as the original host

except for hostname and IP address) and connect them to the same

ingress router. Notice that in §5.1, we fix the data plane difference

by adding filters to reject false routing table entries. We use a

similar approach to anonymize host connections which involve

fake hosts with the same pair of ingress and egress routers, so the

adversary cannot infer that the routes influenced by distribute-lists

are valid routes from the real network. For the 𝑘 − 1 host copies
connected to the same egress router, the idea is to add filters at

different hops along the route so that the routes from one ingress

router to different hosts on the same egress router can achieve an

upper-bound of 𝑘-anonymity. The challenges here are: assigning

the appropriate IP addresses for the fake hosts and choosing where

to add filters.

For each fake host, we choose a new IP that is not included by

any network that appeared in the original network configurations.

This will ensure that the routing behavior regarding the fake hosts

is in our control given that all the existing configuration lines are

unchanged, and that the route filters we added for the real hosts and

the fake hosts will not affect each other. Each fake host is connected

to its ingress router by a pair of matching fake interfaces, and its

network is added to the protocol running on this router. Then, we

use a randomized algorithm (Algorithm 2) to add filters for the fake

host destinations while preserving the original reachability. We use

𝑝 = 0.1 for the evaluations that follow.

Algorithm 2 Route Anonymization Algorithm

Input: �𝐶𝐹𝐺 : the intermediate network after generating 𝑘 − 1 fake
hosts for each real host; 𝑝: noise coefficient

Output: Route anonymized network �𝐶𝐹𝐺
1: for �̃� ∈ �̃� do
2: DstH𝑜𝑙𝑑 [̃𝑟 ] ← reachable fake hosts from �̃� in �𝐶𝐹𝐺
3: for FIB entry containing fake hosts 𝑓 ℎ do
4: with prob. 𝑝 , add filter on �̃� to deny 𝑓 ℎ from 𝑛𝑥𝑡

5: DstH𝑛𝑒𝑤 [̃𝑟 ] ← check host reachability of �̃�

6: for fake host 𝑓 ℎ ∈ DstH𝑜𝑙𝑑 [̃𝑟 ] \ DstH𝑛𝑒𝑤 [̃𝑟 ] do
7: Remove the filter for 𝑓 ℎ

5.4 Discussion

Time complexity:As we trade traceroute requests in the second
strawman approach for router local FIB lookups, the remainingmost

time-consuming job in our workflow is data plane simulation, i.e.,

the number of iterations in our algorithm. The number of iterations

can be strictly upper-bounded by the number of edges added during

topology anonymization, because in each iteration, for a specific

destination, if there exists some wrong next hop in the data plane,

at least one fake link will be added with the filter regarding this

destination. But we notice that, in general, we are able to satisfy

SFE conditions within a smaller number of iterations.

Modified configuration lines: Our modifications to the configu-

ration files include fake hosts, interfaces, and filters. The filters are

added during step 2.1 and step 2.2 in our workflow. In Algorithm 1,

at most 𝑂 ( |𝐻 | ( |�̂� | − |𝐸 |)) filters are added to the configurations. In

Algorithm 2, the expected number of filters is less than𝑂 ( |𝑅 | · |𝐻 |)
The number of configuration lines for (𝑘𝐻 − 1) · |𝐻 | fake hosts

and corresponding interfaces are deterministic. Other fake inter-

faces are generated during topology anonymization, for which we

adopted the existing graph anonymization algorithm, so we will

not elaborate on its complexity here.

Privacy analysis: The ConfMask workflow is a general approach

to anonymize the network configurations in a consistent manner,

considering both the control plane and the data plane to satisfy the

desired privacy while preserving functional equivalence (§3.1)
for utility. We provide formal abstractions of network attributes

and the theoretical proof of our privacy guarantees, which ensures

k-anonymity in node degrees for the topology and routing paths

for the data plane.

Limitations: In the sections above, we demonstrate the key com-

ponents of the ConfMask workflow applying a basic k-anonymity

algorithm for topology and routes, which are known to be suscep-

tible to some deanonymization techniques such as related datasets

and membership inference [33]. But we emphasize that ConfMask

can be enhanced with other anonymization algorithms providing

stronger anonymity guarantees [11, 46] or providing anonymiza-

tion for the number of routers [41].

6 Implementation
We implement ConfMask in Python with ∼4000 lines of code and
use pybatfish [16] for the network simulations in our workflow (Fig-

ure 3). ConfMask currently supports protocols such as BGP, OSPF,

RIP in Cisco routers, and it is easily extendable to more protocols

and vendors (limited to Batfish support for now) using the same

logic. In the preprocessing step, we record the original topology and

routes in the network simulated from the input configuration files.

Then, we parse the configuration files to separate configuration

lines for interfaces, protocols, filters, and leave the lines that do not

fall within these categories unchanged throughout the workflow.

Topology anonymization: Step 1 adds new interface configura-

tions and adds network to existing protocol configurations on a

router. We use an existing algorithm [25] to satisfy 𝑘−anonymity

for the network topology, but if a different topology anonymity is

used, any existing graph anonymization algorithm that satisfies the

limitation mentioned in 4.2 can be easily adopted to topology ano-

nymization. Suppose that a new edge needs to be added between

router 𝑟1 and 𝑟2, we generate an IP prefix that is not in the original

network, and add interfaces to 𝑟1 and 𝑟2 with matching IPs in the

new prefix. Then, we add this network prefix to the existing routing

protocol configurations on both routers.

Route anonymization: We implement the filters added in Step

2 using distribute-list configurations on the Cisco routers. Apart

from distribute-list configurations, we also need to add lines to

existing configurations to apply the filter to a certain interface or

neighbor. For example, in OSPF networks, new lines are added to

the next_hop interface to apply the filter, while in BGP networks,

new lines are added to the bgp neighbor configuration.
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Figure 5: Average number of distinct paths

between edge routers in all networks, with

𝑘𝑅 = 6 and 𝑘𝐻 = 2

Figure 6:Minimum number of nodes of the

same degree in all networks, with 𝑘𝑅 = 6 and

𝑘𝐻 = 2

Figure 7: Clustering coefficients of all anon-

ymized networks, with 𝑘𝑅 = 6 and 𝑘𝐻 = 2

Figure 8: Proportion of exactly kept paths Figure 9: Preserved network specifications

via Config2Spec, with 𝑘𝑅 = 6 and 𝑘𝐻 = 4

Figure 10: Anonymity and utility compari-

son

7 Evaluation
We evaluate ConfMask on several networks under a variety of

parameter settings, to address the key questions below:

Q1: How does ConfMask preserve privacy and utility? By a default
setting of 𝑘𝐻 = 2, 𝑘𝑅 = 6, and a random noise generator, our

solution can achieve on average 1.93 times better privacy metrics,

while ensuring functional equivalence.

Q2: How do different parameters affect the results of ConfMask, and
what is the tradeoff? We observed that both 𝑘𝐻 and 𝑘𝑅 negatively

affect the configuration utility metric 𝑈𝐶 to different extents, and

there is a moderate negative correlation between𝑈𝐶 and the route

anonymity metric 𝑁𝑟 , with a correlation coefficient of −0.36.
Q3: How efficiently does ConfMask perform and scale up to large

networks? We compare ConfMask with 2 strawman solutions, and

show that our solution scales up to large networks well by out-

performing strawman 2 by around 85% and handling all large test

networks within minutes.

Datasets: There are 8 groups of network configurations in our eval-

uation (Table 2), including OSPF-only networks and BGP+OSPF

networks, with sizes ranging from 18 to 219. Among them, net-

works A, B and C use real-world configuration files, while the

configurations of networks D ∼ H are auto-generated by scripts

from network topologies available online[24], which include some

of the largest network topologies we can obtain for now.

7.1 Effectiveness of Privacy and Utility
To evaluate the effectiveness of ConfMask on achieving privacy and

utility, we measure the following five metrics: (a) Route Anonymity:
number of distinct routing paths between edge routers 𝑁𝑟 ; (b) Route
Utility: percentage of exactly kept host-to-host paths; (c) Topology
Anonymity: minimum number of nodes sharing the same degree

𝑘𝑑 ; (d) Topology Utility: Clustering Coefficient of network topology,

ID Network |𝑅 | |𝐻 | |𝐸 | #config lines Network Type

A Enterprise 10 8 26 1095 BGP+OSPF

B University 13 8 25 1652 BGP+OSPF

C Backbone 11 9 22 980 BGP+OSPF

D Bics 49 98 162 4410 OSPF

E Columbus 86 68 169 6968 OSPF

F USCarrier 161 58 378 13940 OSPF

G FatTree04 20 16 48 1544 OSPF

H FatTree08 72 64 320 8448 OSPF

Table 2: The evaluation networks

a metric widely used in graph anonymization works [25]; and (e)
Configuration Utility: depending on the number of lines injected into

configuration files𝑁𝑙 and the total number of lines 𝑃𝑙 , configuration

utility is defined as𝑈𝐶 = 1 − 𝑁𝑙/𝑃𝑙 .
Route anonymity and utility:We use the minimum and average

𝑁𝑟 to indicate how much a routing path can be hidden among

others, thus adding up to the difficulty of distinguishing the real

routing paths. As shown in Figure 5, our solution can reach the

average anonymity of 1.93 routing paths per pair of routers, by

setting the number of fake hosts added 𝑘𝐻 = 2. We also verify

that ConfMask fulfills SFE conditions (i.e., preserve all original FIB

entries) by ensuring our system terminates on all test networks.

Topology anonymity and utility:We also evaluate the anony-

mity and structural utility achieved by ConfMask from the topology

perspective. To be consistent with the topology 𝑘-anonymity defini-

tion above, we measure the minimum number of nodes that sharing

the same degree in the graph, and present the result in Figure 6.

Since ConfMask ensures 𝑘-anonymity by design, the minimum 𝑘 is

always larger than or equal to the input argument 𝑘𝑅 , regardless of

the topology structure of the original network.

To make a network built on top of a topology meet the route

utility properties that ConfMask promises, the anonymized topol-

ogy should at least have all original edges and nodes preserved.
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Figure 11: Impact of router degree (𝑘𝑅 ) on

route anonymity (𝑁𝑟 )

Figure 12: Impact of host degree (𝑘𝐻 ) on

route anonymity (𝑁𝑟 )

Figure 13: Impact of router degree (𝑘𝑅 ) on

config utility (𝑈𝐶 )

Figure 14: Impact of host degree (𝑘𝐻 ) on

config utility (𝑈𝐶 )

Figure 15: Route anonymity (𝑁𝑟 ) versus con-

fig utility (𝑈𝐶 )

Figure 16: Running time comparison

Since ConfMask leverages incremental anonymization algorithm,

the preservation of existing nodes and edges is guaranteed. We eval-

uate a stronger utility standard Clustering Coefficient (CC). Figure 7

shows the comparison of CC value between anonymized graphs

and the original one. ConfMask maintains a similar structure to the

original topology, with an average difference of only 0.075.

Configuration utility: In addition to the similarity of the configu-

ration files and data plane of the anonymized and original networks,

downstream tasks of ConfMask such as collaborative network trou-

bleshooting, highly rely on the anonymized configuration files

being similar to the original files, which we measure by the number

of lines modified during the anonymization process. Our tests show

that, on average, our solution only needs to add ∼25% of lines to

the configuration files, and on large scale network, the percentage

can goes down to ∼5%. The configuration breakdown can be found

in Appendix Table 3.

7.2 Route Anonymity Algorithms
We compare ConfMask with NetHide [30] and two strawman ap-

proaches (introduced in §4.3) on the following metrics: (a) Route

Utility: the percentage of exactly preserved host-to-host paths 𝑃𝑈
and network specifications [7]; (b) Route Anonymity: 𝑁𝑟 , and (c)

Configuration Utility:𝑈𝐶 .

First, by measuring 𝑃𝑈 , we show that NetHide fails to keep all

host-to-host paths exactly, which means it could not preserve our

definition of Functional Equivalence. As is shown in Fig. 8, in every

test network, NetHide can only preserve less than 30% of paths

exactly, with an average of ∼15%, and down to ∼1%. While our

solution can guarantee 100% preservation by ensuring SFE.

In addition, we compare the differences in network specifications

before and after anonymization with Config2Spec [7], which in-

cludes Reachability, Waypoint and LoadBalance), to show that

NetHide fails to preserve original forwarding behavior. A network

specification consists of a set of policies, each capturing a specific

behavior in the network (e.g., reachability of two routers). In Fig. 9,

the "kept spec" bars show that NetHide only keeps 65.2% of original

specifications, while ConfMask preserves 91.3% specifications on

average, reducing the number of missing specifications by 75%.

The bars above 1 show that ConfMask can introduce 3.55 times

more anonymization specifications than NetHide, while 96.9% of

the introduced specifications by ConfMask are for the new fake

hosts and links, so that no significant false positive specifications

are introduced to the network.

We then compare ConfMask with strawman solutions discussed

previously to show their effect or drawbacks on route privacy and

configuration utility. Figure 10(L) compares 𝑁𝑟 across 2 strawman

solutions and ConfMask. Results show that ConfMask slightly out-

performs two strawman solutions, with average 𝑁𝑟 of 1.98, 1.83,

and 1.81 respectively. However, the strawman approaches either

expose patterns for easy de-anonymization (§4.3) or take too much

running time (§7.3).

We also compare our solution with strawman solutions from

the utility perspective. Figure 10(R) shows that, Strawman 1, by

filtering all hosts on all fake interfaces, injects a significantly larger

amount of code lines into the configuration files, reaching 21.2%

more than ConfMask. On the other hand, although strawman 2 is

conservative in adding filters, achieving average 13.1% fewer lines

of code injected than ConfMask, but it suffers from a small pace,

resulting in extra long running time.

7.3 Parameter Sensitivity and Performance
In this section, we review the experiment result to show the trade-

off between privacy and utility metrics, as well as the effect of each

parameter to the overall metrics of ConfMask outputs. We also

show that ConfMask improved the anonymization performance

compared to two strawman solutions.

Anonymity parameters: Figure 11-14 shows individual impacts

of 𝑘𝑅 and 𝑘𝐻 on route anonymity and utility metrics. We found
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that, topology parameter 𝑘𝑅 doesn’t really affect route anony-

mity(Figure 11), fixing 𝑘𝐻 = 2 and setting 𝑘𝑅 to 2, 6, 10 results

in average 𝑁𝑟 of 2.00, 1.97, 2.04, revealing no strong correlation.

On the contrary, 𝑁𝑟 is largely decided on 𝑘𝐻 , i.e., the number of

fake hosts corresponding to each real hosts in the original network.

When fixing 𝑘𝑅 = 6, most 𝑁𝑟 grows as 𝑘𝐻 increases. Stepping 𝑘𝐻
in 2, 4, 6 results in average 𝑁𝑟 of 2.05, 2.29, 2.54. However, both

parameters negatively impacting the configuration utility. As 𝑘𝑅
grows from 2 to 10,𝑈𝐶 can drop by 1% to 20%, while as 𝑘𝐻 grows

from 2 to 6,𝑈𝐶 drops moderately by 0% to 3%.

Privacy-utility trade-off: To quantitatively study the trade-off

between route privacy and utility, we plot each test case as a data

point in the number of distinct paths against percentage of config-

uration lines injected. Figure 15 shows that, the two metrics are

loosely negatively correlated, with 𝑟 = −0.36.
Performance evaluation:We care about the performance of Conf-

Mask, so that it can scale efficiently to larger networks. Figure 16

shows that strawman 1 performs the fastest, with 60% to tens of

times less end-to-end running time than ConfMask, sacrificing

the privacy. Strawman 2 runs slowest among all solutions, due to

the high computation complexity of inspecting routes one by one.

It takes average 8 to 100 times running time than ConfMask, in-

curring unacceptable time cost. While for ConfMask, it can finish

anonymizing the largest network, FatTree-08, in around 6 minutes.

8 Related Work

Graph anonymization: Most existing approaches in topology

anonymization focus on satisfying certain anonymity targets like 𝑘-

anonymity [19, 25, 26, 45],𝑘-automorphism [46], or𝑘-isomorphism [11],

but they mainly focus on social networks and lack utility considera-

tion in computer networks. Moreover, they consider only unlabeled

graphs, meaning that additional information such as IP addresses

and configurations can still make the network topology insecure.

Routing anonymization: Another type of approach aims at de-

fending network threats such as link-flooding attacks (LFA) by

misleading adversaries to get a wrong network topology. For in-

stance, HoneyNet [23] deceives and detects attackers by redirecting

traceroute packets, NetHide [30] diverts the data paths from the

control paths, and EqualNet [22] further adds virtual nodes in addi-

tion to virtual links. However, these approaches reduce the utility

of legitimate use, and may require programmable devices in the

network which are not widely applicable nowadays. Moreover,

these obfuscations still leak implicit privacy information and are

not desirable when precise utility properties are required.

Trace anonymization:Network traces contain a lot of sensitive in-
formation that can indicate individual users’ activities. tcpmkpub [36]
is a tool for modifying sensitive attributes to realize trace anony-

mization, but has been shown vulnerable to topology inference

attacks [14]. Another approach is to realize differential privacy

on the network trace data [28]. However, high privacy levels can

lead to low fidelity results, which is undesirable for cases requiring

accurate data for analyses. There is also a flow-based trace ano-

nymization strategy, (𝑘, 𝑗)-obfuscation [37], which guarantees a

high-level privacy via obfuscating sensitive data in network flows.

IP Anonymization: There has been work based on cryptographic

means to anonymize IP addresses in files. The earliest work on this

approach is TCPdpriv [31], a table-based IP address anonymizer.

Later, Crypto-Pan [39] was extended as a cryptographic sanitiza-

tion tool of network trace data including IP addresses in a prefix-

preserving manner. Such a method is also extended to large scale

distributed setting [43]. ConfMask is compatible with these tech-

niques but focuses on implicit information anonymization.

9 Discussion

Internet hosts: In this work, we only take into consideration the

internal hosts which are configured inside the network. It is possi-

ble to also include hosts outside of given network configurations,

for example Internet hosts. One potential way is to divide Inter-

net destinations into routing Equivalent Classes as often used in

network verification [5], and substitute the concept of host with
Equivalent Classes. We will leave this extension to future works.

PII obfuscation: We do not propose PII obfuscation as the critical

stage of ConfMask’s anonymization pipeline, but ConfMask is com-

patible with any text-based information obfuscation technique as

downstream plug-in tasks. ConfMask generates configuration files

that follow the same syntax as the input files. Therefore, existing

cryptographic IP anonymization and BGP AS Number hashing [27],

and password hashing [21] works are all applicable to the output

of ConfMask as privacy enhancement.

Network scale obfuscation: Although we implement ConfMask

with a basic graph anonymization algorithm and do not consider

the number of routers to be a key attribute to hide in the anony-

mization process, our theoretical proof of functional equivalence

does not require the set of routers to remain unchanged before and

after anonymization. The workflow of modifying topology, and

correcting and obfuscating routing paths is also applicable as long

as the graph algorithm does not remove existing routers. Therefore,

theoretically, ConfMask is extendable with graph anonymization al-

gorithms that modify the number of nodes (e.g., [12, 41]) to enable

the obfuscation of the number of routers. However, the anony-

mity definition of router number and how to auto-generate new

configuration files for the additional routers while keeping them in-

distinguishable from the human-configured routers are challenging

problems to address. We leave these extensions to future works.

10 Conclusion

Sharing network configuration files can provide significant benefits

for both network management and research purposes. However, the

potential privacy risks associated with sharing such files must be

carefully addressed. In this paper, we present ConfMask as a privacy-

preserving configuration sharing tool that effectively anonymizes

topology and routing behaviors while preserving functional equiv-

alence. Our evaluation shows that ConfMask scales well for large

networks and achieves the desired level of anonymity.
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Appendices are supporting material that has not been peer-reviewed.

A Proof that SFE Conditions Imply Functional Equivalence
Our algorithm aims to achieve functional equivalence via fulfilling the SFE (strong functional equivalence) conditions. To this end, we show

that the SFE conditions are sufficient to guarantee functional equivalence, for distance-vector protocols, link-state protocols, and the BGP

protocol (Theorem A.4). We may first recall and mathematically formulate functional equivalence and SFE conditions as follows.

Functional equivalence
∃𝑓 injective, such that:

(1)

(
𝑓 (𝑟 ) ∈ A(𝑟 ), ∀𝑟 ∈ 𝑅

)
∧

(
𝑓 (ℎ) ∈ A(ℎ), ∀ℎ ∈ 𝐻

)
;

(2)

(
(ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃

)
⇐⇒

(
(ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ̂𝑑 ) ∈ 𝐷𝑃

)
, where

(
ℎ̂𝑠 = 𝑓 (ℎ𝑠 ), ℎ̂𝑑 = 𝑓 (ℎ𝑑 ), 𝑟𝑖 = 𝑓 (𝑟𝑖 ), ∀𝑖

)
.

SFE conditions Assume that no existing router is removed during anonymization, i.e., 𝑅 ⊆ A(𝑅).
Distance-vector protocols

(1)

(
𝑒 = (𝑟, 𝑟 ′) ∈ 𝐸𝑅

)
=⇒

(̂
𝑒 = (A(𝑟 ),A(𝑟 ′)) ∈ A(𝐸𝑅)

)
∧

(̂
𝑒 has the same link properties as 𝑒

)
;(

𝑒 = (𝑟, ℎ) ∈ 𝐸𝐻
)
=⇒

(̂
𝑒 = (A(𝑟 ),A0 (ℎ)) ∈ A(𝐸𝐻 )

)
∧

(̂
𝑒 has the same link properties as 𝑒

)
.

(2)

(̂
𝑒 = (̂𝑣, �̂� ′) ∈ A(𝐸)

)
∧

(̂
𝑣 has some route imported from �̂�

′)
=⇒

(
𝑒 = (A−1 (̂𝑣),A−1 (̂𝑣 ′)) ∈ 𝐸

)
.

BGP
(1) Each AS satisfies the SFE conditions for distance-vector protocols.

(2) The network of ASes satisfies the SFE conditions for distance-vector protocols.

Link-state protocols
(1)

(
𝑒 = (𝑟, 𝑟 ′) ∈ 𝐸𝑅

)
=⇒

(̂
𝑒 = (A(𝑟 ),A(𝑟 ′)) ∈ A(𝐸𝑅)

)
∧

(
cost (̂𝑒) = cost(𝑒)

)
;(

𝑒 = (𝑟, ℎ) ∈ 𝐸𝐻
)
=⇒

(̂
𝑒 = (A(𝑟 ),A0 (ℎ)) ∈ A(𝐸𝐻 )

)
∧

(
cost (̂𝑒) = cost(𝑒)

)
.

(2)

(̂
𝑒 = (̂𝑣, �̂� ′) ∈ A(𝐸)

)
∧

(
𝑒 = A−1 (𝑣),A−1 (𝑣 ′) ∉ 𝐸

)
=⇒

(
cost (̂𝑒) > min_cost(A−1 (𝑣),A−1 (𝑣 ′))

)
∨

(
cost (̂𝑒) = min_cost(A−1 (𝑣),A−1 (𝑣 ′)) ∧ �̂� is rejected

)
.

Lemma A.1. Suppose that �𝐶𝐹𝐺 follows a distance-vector routing protocol. If �𝐶𝐹𝐺 satisfies the SFE conditions for distance-vector protocols

with respect to 𝐶𝐹𝐺 , then 𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺 .

Proof. In order to prove functional equivalence, we need to find an injective mapping 𝑓 that satisfies its definition. Note that we have

assumed 𝑅 ⊆ A(𝑅), so we can choose 𝑓 as the identity mapping when acting on 𝑅. As for hosts, the original hosts are preserved in the

anonymized network though fake hosts may be added. For each original host ℎ ∈ 𝐻 , recall that A0
maps it to the corresponding unique real

host in the anonymized network, so we choose 𝑓 = A0
when acting on 𝐻 . Clearly 𝑓 (𝑟 ) ∈ A(𝑟 ) for all 𝑟 ∈ 𝑅 and 𝑓 (ℎ) ∈ A(ℎ) for all ℎ ∈ 𝐻 .

Also note that this injective mapping 𝑓 we choose does not map to fake hosts, so when inversely mapping hosts in the anonymized network

back to hosts in the original network, we do not consider fake hosts and routing paths involving fake hosts. Apart from these, it suffices to

show that the forwarding behavior in the dataplane between the original network and the anonymized network mapped via 𝑓 are identical.

Showing that 𝐷𝑃 ⊆ 𝐷𝑃 : Fix an arbitrary routing path 𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃 , forwarding from ℎ𝑠 to ℎ𝑑 in the original network, then

(ℎ𝑠 , 𝑟1) ∈ 𝐸, (𝑟1, 𝑟2) ∈ 𝐸, · · · , (𝑟𝑛, ℎ𝑑 ) ∈ 𝐸. By Condition 1, this implies that

(𝑓 (ℎ𝑠 ), 𝑓 (𝑟1)) ∈ A(𝐸), having the same link properties as (ℎ𝑠 , 𝑟1),
(𝑓 (𝑟1), 𝑓 (𝑟2)) ∈ A(𝐸), having the same link properties as (𝑟1, 𝑟2),

· · · · · ·
(𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 )) ∈ A(𝐸), having the same link properties as (𝑟𝑛, ℎ𝑑 ) .

This forms a path �̂� = (𝑓 (ℎ𝑠 ), 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 )), but we assume for contradiction that �̂� ∉ 𝐷𝑃 . The only possibility for this is that,

there exists another routing path �̃� = (𝑓 (ℎ𝑠 ), 𝑟1, · · · , 𝑟𝑛′ , 𝑓 (ℎ𝑑 )) ∈ 𝐷𝑃 , such that �̃� is more preferred than �̂� as the routing path from 𝑓 (ℎ𝑠 )
to 𝑓 (ℎ𝑑 ) in the anonymized network. Since �̃� ∈ 𝐷𝑃 , this means that

(𝑓 (ℎ𝑠 ), 𝑟1) ∈ A(𝐸), with 𝑓 (ℎ𝑠 ) having some route imported from 𝑟1,

(𝑟1, 𝑟2) ∈ A(𝐸), with 𝑟1 having some route imported from 𝑟2,

· · · · · ·
(𝑟𝑛′ , 𝑓 (ℎ𝑑 )) ∈ A(𝐸), with 𝑟𝑛′ having some route imported from 𝑓 (ℎ𝑑 ).
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Then by Condition 2, we can see that (ℎ𝑠 , 𝑓 −1 (𝑟1)) ∈ 𝐸, (𝑓 −1 (𝑟1), 𝑓 −1 (𝑟2)) ∈ 𝐸, · · · , (𝑓 −1 (𝑟𝑛′ ), ℎ𝑑 ) ∈ 𝐸. This would form a path 𝑝′ =
(ℎ𝑠 , 𝑓 −1 (𝑟1), · · · , 𝑓 −1 (𝑟𝑛′ ), ℎ𝑑 ) in the original network. Again by Condition 1, we have that

(𝑓 (ℎ𝑠 ), 𝑟1) has the same link properties as (ℎ𝑠 , 𝑓 −1 (𝑟1)),
(𝑟1, 𝑟2) has the same link properties as (𝑓 −1 (𝑟1), 𝑓 −1 (𝑟2)),

· · ·
(𝑟𝑛′ , 𝑓 (ℎ𝑑 )) has the same link properties as (𝑓 −1 (𝑟𝑛′ ), ℎ𝑑 ) .

Therefore, since �̃� is preferred over �̂� as the routing path from 𝑓 (ℎ𝑠 ) to 𝑓 (ℎ𝑑 ) in the anonymized network, 𝑝′ must be preferred over 𝑝 as

the routing path from ℎ𝑠 to ℎ𝑑 in the original network as well. Then 𝑝 ∉ 𝐷𝑃 , leading to a contradiction. Therefore, we have shown that for

an arbitrary routing path 𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃 , its mapped version �̂� = (𝑓 (ℎ𝑠 ), 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 )) must be a routing path in

the anonymized network as well.

Showing that 𝐷𝑃 ⊇ 𝐷𝑃 : As is said, we do not consider routing paths that involve fake hosts. Fix an arbitrary routing path �̂� =

(ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛′ , ℎ̂𝑑 ) ∈ 𝐷𝑃 , forwarding from ℎ̂𝑠 to ℎ̂𝑑 in the anonymized network. Note that we have 𝑓 −1 = A−1, so that

(ℎ̂𝑠 , 𝑟1) ∈ A(𝐸), with ℎ̂𝑠 having some route imported from 𝑟1,

(𝑟1, 𝑟2) ∈ A(𝐸), with 𝑟1 having some route imported from 𝑟2,

· · · · · ·

(𝑟𝑛′ , ℎ̂𝑑 ) ∈ A(𝐸), with 𝑟𝑛′ having some route imported from ℎ̂𝑑 .

Then by Condition 2, we can see that (𝑓 −1 (ℎ̂𝑠 ), 𝑓 −1 (𝑟1)) ∈ 𝐸, (𝑓 −1 (𝑟1), 𝑓 −1 (𝑟2)) ∈ 𝐸, · · · , (𝑓 −1 (𝑟𝑛′ ), 𝑓 −1 (ℎ̂𝑑 )) ∈ 𝐸. This forms a path

𝑝 = (𝑓 −1 (ℎ̂𝑠 ), 𝑓 −1 (𝑟1), · · · , 𝑓 −1 (𝑟𝑛′ ), 𝑓 −1 (ℎ̂𝑑 )), but we assume for contradiction that 𝑝 ∉ 𝐷𝑃 . The only possibility for this is that, there

exists another routing path 𝑝 = (𝑓 −1 (ℎ̂𝑠 ), 𝑟1, · · · , 𝑟𝑛, 𝑓 −1 (ℎ̂𝑑 )) ∈ 𝐷𝑃 , such that 𝑝 is more preferred than 𝑝 as the routing path from 𝑓 −1 (ℎ̂𝑠 )
to 𝑓 −1 (ℎ̂𝑑 ) in the original network. Since 𝑝 ∈ 𝐷𝑃 , we have that (𝑓 −1 (ℎ̂𝑠 ), 𝑟1) ∈ 𝐸, (𝑟1, 𝑟2) ∈ 𝐸, · · · , (𝑟𝑛, 𝑓 −1 (ℎ̂𝑑 )) ∈ 𝐸. Then by Condition 1,
this implies that

(ℎ̂𝑠 , 𝑓 (𝑟1)) ∈ A(𝐸), having the same link properties as (𝑓 −1 (ℎ̂𝑠 ), 𝑟1),
(𝑓 (𝑟1), 𝑓 (𝑟2)) ∈ A(𝐸), having the same link properties as (𝑟1, 𝑟2),

· · · · · ·

(𝑓 (𝑟𝑛), ℎ̂𝑑 ) ∈ A(𝐸), having the same link properties as (𝑟𝑛, 𝑓 −1 (ℎ̂𝑑 )) .

This would form a path �̂� = (ℎ̂𝑠 , 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑛), ℎ̂𝑑 ), with each link on �̂� having the same link properties as each link on 𝑝 ∈ 𝐷𝑃 .

Therefore, since 𝑝 is preferred over 𝑝 as the routing path from 𝑓 −1 (ℎ̂𝑠 ) to 𝑓 −1 (ℎ̂𝑑 ) in the original network, �̂� must be preferred over �̂� in

the anonymized network as well. Then �̂� ∉ 𝐷𝑃 , leading to a contradiction. Therefore, we have shown that for an arbitrary routing path

�̂� = (ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛′ , ℎ̂𝑑 ) ∈ 𝐷𝑃 , its inversly mapped version 𝑝 = (𝑓 −1 (ℎ̂𝑠 ), 𝑓 −1 (𝑟1), · · · , 𝑓 −1 (𝑟𝑛′ ), 𝑓 −1 (ℎ̂𝑑 )) must be a routing path in the

original network as well.

Concluding the proof: For the specific 𝑓 that we have chosen,

𝑓 (𝑣) =
{
𝑣, if 𝑣 ∈ 𝑅,
A0 (𝑣), if 𝑣 ∈ 𝐻.

Moreover, not considering routing paths that involve fake hosts, we have shown that the dataplanes 𝐷𝑃 in the original network and 𝐷𝑃

in the anonymized network are identical, i.e., an arbitrary path (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) is a routing path in the original network if and only

if (ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ̂𝑑 ) is a routing path in the anonymized network, with ℎ̂𝑠 = 𝑓 (ℎ𝑠 ), ℎ̂𝑑 = 𝑓 (ℎ𝑑 ), and 𝑟𝑖 = 𝑓 (𝑟𝑖 ) for all 𝑖 = 1, · · · , 𝑛. This
concludes that 𝐶𝐹𝐺

𝐹≃�𝐶𝐹𝐺 , so the proof is complete. □

Lemma A.2. Suppose that �𝐶𝐹𝐺 follows BGP. If �𝐶𝐹𝐺 satisfies the SFE conditions for link state protocols with respect to 𝐶𝐹𝐺 , then

𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺 .

Proof. This is trivial. Choose the same 𝑓 as in Lemma A.1 Within each AS, Condition 1 ensures functional equivalence by Lemma A.1, and

thus all routers, hosts, links, and routing behaviors remain unchanged. On top of that, Condition 2 again ensures functional equivalence for

the network of ASes by Lemma A.1, thus the inter-AS routing behaviors are also preserved. The proof is thus complete. □

Lemma A.3. Suppose that�𝐶𝐹𝐺 follows a link-state routing protocol. If�𝐶𝐹𝐺 satisfies the SFE conditions for link state protocols with respect

to 𝐶𝐹𝐺 , then 𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺 .
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Proof. We choose 𝑓 in the exact same way as in Lemma A.1. Again, not consider the fake hosts and routing paths involving fake hosts, it

then suffices to show that the forwarding behavior in the dataplane between the original network and the anonymized network mapped via

𝑓 are identical.

Showing that 𝐷𝑃 ⊆ 𝐷𝑃 : Fix an arbitrary routing path 𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃 , forwarding from ℎ𝑠 to ℎ𝑑 in the original network, then

(ℎ𝑠 , 𝑟1) ∈ 𝐸, (𝑟1, 𝑟2) ∈ 𝐸, · · · , (𝑟𝑛, ℎ𝑑 ) ∈ 𝐸. By Condition 1, this implies that

(𝑓 (ℎ𝑠 ), 𝑓 (𝑟1)) ∈ A(𝐸), cost((𝑓 (ℎ𝑠 ), 𝑓 (𝑟1))) = cost((ℎ𝑠 , 𝑟1)),
(𝑓 (𝑟1), 𝑓 (𝑟2)) ∈ A(𝐸), cost((𝑓 (𝑟1), 𝑓 (𝑟2))) = cost((𝑟1, 𝑟2)),

· · · · · ·
(𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 )) ∈ A(𝐸), cost((𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 ))) = cost((𝑟𝑛, ℎ𝑑 )) .

This forms a path �̂� = (𝑓 (ℎ𝑠 ), 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 )), but we assume for contradiction that �̂� ∉ 𝐷𝑃 . The only possibility for this is that,

there exists another routing path �̃� = (𝑓 (ℎ𝑠 ), 𝑟1, · · · , 𝑟𝑛′ , 𝑓 (ℎ𝑑 )) ∈ 𝐷𝑃 , such that �̃� is more preferred than �̂� as the routing path from 𝑓 (ℎ𝑠 )
to 𝑓 (ℎ𝑑 ) in the anonymized network. Since �̃� ∈ 𝐷𝑃 , this means that

𝑒0 = (𝑓 (ℎ𝑠 ), 𝑟1) ∈ A(𝐸), with cost(𝑒0) = min_cost(𝑓 (ℎ𝑠 ), 𝑟1) and 𝑒0 is not rejected,
𝑒1 = (𝑟1, 𝑟2) ∈ A(𝐸), with cost(𝑒1) = min_cost(𝑟1, 𝑟2) and 𝑒1 is not rejected,

· · · · · ·
𝑒𝑛′ = (𝑟𝑛′ , 𝑓 (ℎ𝑑 )) ∈ A(𝐸), with cost(𝑒𝑛′ ) = min_cost(𝑟𝑛′ , 𝑓 (ℎ𝑑 )) and 𝑒𝑛′ is not rejected.

The reason is, if any of 𝑒𝑖 , 𝑖 = 0, · · · , 𝑛′ is rejected, then clearly �̃� cannot be a valid routing path. Moreover, if any of 𝑒𝑖 , 𝑖 = 0, · · · , 𝑛′ does not
have its cost as the minimum cost between its source and destination, there exists another link �̃�

∗
, such that cost (̃𝑒∗) < cost(𝑒𝑖 ) for some

𝑖 = 1, · · · , 𝑛′. Then by simply replacing 𝑒𝑖 with �̃�
∗
in �̃� , we will be able to obtain a new path from 𝑓 (ℎ𝑠 ) to 𝑓 (ℎ𝑑 ) with an overall lower cost

than �̃� , contradicting �̃� ∈ 𝐷𝑃 . Now we can use the contrapositive of Condition 2. Since 𝑒𝑖 ∈ A(𝐸) is already guaranteed to be true for all

𝑖 = 0, · · · , 𝑛′, it can only be the case that 𝑓 −1 (𝑒𝑖 ) ∉ 𝐸 is false for all 𝑖 = 0, · · · , 𝑛′, so that 𝑒0 = (ℎ𝑠 , 𝑓 −1 (𝑟1)) ∈ 𝐸, 𝑒1 = (𝑓 −1 (𝑟1), 𝑓 −1 (𝑟2)) ∈ 𝐸,
· · · , 𝑒𝑛′ = (𝑓 −1 (𝑟𝑛′ ), ℎ𝑑 ) ∈ 𝐸. Moreover, by Condition 1, we have that cost(𝑒𝑖 ) = cost(𝑒𝑖 ) for all 𝑖 = 0, · · · , 𝑛′. Therefore, since �̃� is preferred

over �̂� as the routing path from 𝑓 (ℎ𝑠 ) to 𝑓 (ℎ𝑑 ) in the anonymized network, 𝑝′ must be preferred over 𝑝 as the routing path from ℎ𝑠 to

ℎ𝑑 in the original network as well. Then 𝑝 ∉ 𝐷𝑃 , leading to a contradiction. Therefore, we have shown that for an arbitrary routing path

𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 ) ∈ 𝐷𝑃 , its mapped version �̂� = (𝑓 (ℎ𝑠 ), 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑛), 𝑓 (ℎ𝑑 )) must be a routing path in the anonymized network as

well.

Showing that 𝐷𝑃 ⊇ 𝐷𝑃 : As is said, we do not consider routing paths that involve fake hosts. Fix an arbitrary routing path �̂� =

(ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛′ , ℎ̂𝑑 ) ∈ 𝐷𝑃 , forwarding from ℎ̂𝑠 to ℎ̂𝑑 in the anonymized network. Note that we have 𝑓 −1 = A−1, so that

𝑒0 = (ℎ̂𝑠 , 𝑟1) ∈ A(𝐸), with cost(𝑒0) = min_cost(ℎ̂𝑠 , 𝑟1) and 𝑒0 is not rejected,
𝑒1 = (𝑟1, 𝑟2) ∈ A(𝐸), with cost(𝑒1) = min_cost(𝑟1, 𝑟2) and 𝑒1 is not rejected,

· · · · · ·

𝑒𝑛′ = (𝑟𝑛′ , ℎ̂𝑑 ) ∈ A(𝐸), with cost(𝑒𝑛′ ) = min_cost(𝑟𝑛′ , ℎ̂𝑑 ) and 𝑒𝑛′ is not rejected.

The reason is, if any of 𝑒𝑖 , 𝑖 = 0, · · · , 𝑛′ is rejected, then clearly �̂� cannot be a valid routing path. Moreover, if any of 𝑒𝑖 , 𝑖 = 0, · · · , 𝑛′ does not
have its cost as the minimum cost between its source and destination, there exists another link �̂�

∗
, such that cost (̂𝑒∗) < cost(𝑒𝑖 ) for some

𝑖 = 1, · · · , 𝑛′. Then by simply replacing 𝑒𝑖 with �̂�
∗
in �̂� , we will be able to obtain a new path from ℎ̂𝑠 to ℎ̂𝑑 with an overall lower cost than �̂� ,

contradicting �̂� ∈ 𝐷𝑃 . Then we can use the contrapositive of Condition 2. Since 𝑒𝑖 ∈ A(𝐸) is already guaranteed to be true for all 𝑖 = 0, · · · , 𝑛′,
it can only be the case that 𝑓 −1 (𝑒𝑖 ) ∈ 𝐸 is false for all 𝑖 = 0, · · · , 𝑛′, so that 𝑒0 = (𝑓 −1 (ℎ̂𝑠 ), 𝑓 −1 (𝑟1)) ∈ 𝐸, 𝑒1 = (𝑓 −1 (𝑟1), 𝑓 −1 (𝑟2)) ∈ 𝐸, · · · ,
𝑒𝑛′ = (𝑓 −1 (𝑟𝑛′ ), 𝑓 −1 (ℎ̂𝑑 )) ∈ 𝐸. This forms a path 𝑝 = (𝑓 −1 (ℎ̂𝑠 ), 𝑓 −1 (𝑟1), · · · , 𝑓 −1 (𝑟𝑛′ ), 𝑓 −1 (ℎ̂𝑑 )), but we assume for contradiction that

𝑝 ∉ 𝐷𝑃 . The only possibility for this is that, there exists another routing path 𝑝 = (𝑓 −1 (ℎ̂𝑠 ), 𝑟1, · · · , 𝑟𝑛, 𝑓 −1 (ℎ̂𝑑 )) ∈ 𝐷𝑃 , such that 𝑝 is more

preferred than 𝑝 as the routing path from 𝑓 −1 (ℎ̂𝑠 ) to 𝑓 −1 (ℎ̂𝑑 ) in the original network. Since 𝑝 ∈ 𝐷𝑃 , this means that 𝑒0 = (𝑓 −1 (ℎ̂𝑠 ), 𝑟1) ∈ 𝐸,
𝑒1 = (𝑓 −1 (𝑟1), 𝑟2) ∈ 𝐸, · · · , 𝑒𝑛 = (𝑓 −1 (𝑟𝑛), ℎ𝑑 ) ∈ 𝐸. Then by Condition 1, this implies that

𝑒0 = (ℎ̂𝑠 , 𝑓 (𝑟1)) ∈ A(𝐸), with cost(𝑒0) = min_cost(ℎ̂𝑠 , 𝑓 (𝑟1)),
𝑒1 = (𝑓 (𝑟1), 𝑓 (𝑟2)) ∈ A(𝐸), with cost(𝑒1) = min_cost(𝑓 (𝑟1), 𝑓 (𝑟2)),

· · · · · ·

𝑒𝑛 = (𝑓 (𝑟𝑛), ℎ̂𝑑 ) ∈ A(𝐸), with cost(𝑒𝑛) = min_cost(𝑓 (𝑟𝑛), ℎ̂𝑑 ) .

This would form a path �̂� = (ℎ̂𝑠 , 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑛), ℎ̂𝑑 ), with each link on �̂� having the same cost as each link on 𝑝 ∈ 𝐷𝑃 , i.e., cost(𝑒𝑖 ) =
cost(𝑒𝑖 ) for all 𝑖 = 0, · · · , 𝑛. Therefore, since 𝑝 is preferred over 𝑝 as the routing path from 𝑓 −1 (ℎ̂𝑠 ) to 𝑓 −1 (ℎ̂𝑑 ) in the original network, �̂�
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must be preferred over �̂� in the anonymized network as well. Then �̂� ∉ 𝐷𝑃 , leading to a contradiction. Therefore, we have shown that for an

arbitrary routing path �̂� = (ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛′ , ℎ̂𝑑 ) ∈ 𝐷𝑃 , its inversly mapped version 𝑝 = (𝑓 −1 (ℎ̂𝑠 ), 𝑓 −1 (𝑟1), · · · , 𝑓 −1 (𝑟𝑛′ ), 𝑓 −1 (ℎ̂𝑑 )) must be a

routing path in the original network as well.

Concluding the proof:We have chosen 𝑓 same as in Lemma A.1. Not considering routing paths that involve fake hosts, we have shown

that the dataplanes 𝐷𝑃 in the original network and 𝐷𝑃 in the anonymized network are identical, i.e., an arbitrary path (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ𝑑 )
is a routing path in the original network if and only if (ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛, ℎ̂𝑑 ) is a routing path in the anonymized network, with ℎ̂𝑠 = 𝑓 (ℎ𝑠 ),
ℎ̂𝑑 = 𝑓 (ℎ𝑑 ), and 𝑟𝑖 = 𝑓 (𝑟𝑖 ) for all 𝑖 = 1, · · · , 𝑛. This concludes that 𝑆𝑅𝑃 𝐹≃ 𝑆𝑅𝑃 , so the proof is complete. □

Theorem A.4. If�𝐶𝐹𝐺 satisfies the SFE conditions with respect to𝐶𝐹𝐺 under some distance-vector routing protocol, BGP, or some link-state

routing protocol, then 𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺 .

Proof. This immediately follows from Lemma A.1, Lemma A.2, and Lemma A.3 by choosing the injective mapping

𝑓 (𝑣) =
{
𝑣, if 𝑣 ∈ 𝑅,
A0 (𝑣), if 𝑣 ∈ 𝐻.

It concludes that SFE conditions implies functional equivalence for our supported types of protocols. □

B Proof that Functional Equivalence Preserves Routing Utilities
Now that we have shown that the SFE conditions imply functional equivalence. In other words, the anonymized networks generated by

our algorithm automatically satisfies functional equivalence. To see why this is useful, we will show that functional equivalence preserves

various desired utility properties (Theorem B.7). We start by rigorously restating the definitions of the important routing utility properties

listed in §3.

Routing utility property definitions:
(1) Reachability: There exists a routing path from ℎ𝑠 ∈ 𝐻 to ℎ𝑑 ∈ 𝐻 in the original network if and only if there exists a routing path from

ℎ̂𝑠 ∈ 𝐻 to ℎ̂𝑑 ∈ 𝐻 in the anonymized network as well, for some ℎ̂𝑠 ∈ A(ℎ𝑠 ) and ℎ̂𝑑 ∈ A(ℎ𝑑 ).
(2) Path-lengths: All the routing paths from ℎ𝑠 ∈ 𝐻 to ℎ𝑑 ∈ 𝐻 in the original network have length 𝑙 if and only if all the routing paths from

ℎ̂𝑠 ∈ 𝐻 to ℎ̂𝑑 ∈ 𝐻 in the anonymized network have length 𝑙 as well, for some ℎ̂𝑠 ∈ A(ℎ𝑠 ) and ℎ̂𝑑 ∈ A(ℎ𝑑 ).
(3) Black-holes: Traffic sent from ℎ𝑠 to ℎ𝑑 is dropped along some path {ℎ𝑠 , 𝑟1, · · · , 𝑟𝑛} ∈ 𝐷𝑃 in the original network if and only if traffic sent

from ℎ̂𝑠 to ℎ̂𝑑 is dropped along the path {ℎ̂𝑠 , 𝑟1, · · · , 𝑟𝑛} ∈ 𝐷𝑃 in the anonymized network, with ℎ̂𝑠 ∈ A(ℎ𝑠 ), ℎ̂𝑑 ∈ A(ℎ𝑑 ) and 𝑟𝑖 ∈ A(𝑟𝑖 )
for all 𝑖 = 1, · · · , 𝑛.

(4) Multipath-consistency: Traffic sent from ℎ𝑠 ∈ 𝐻 is reachable along some routing path to ℎ𝑑 ∈ 𝐻 but dropped along another routing path

in the original network if and only if traffic sent from ℎ̂𝑠 ∈ 𝐻 is reachable along some routing path to ℎ̂𝑑 ∈ 𝐻 but dropped along another

routing path in the anonymized network, with ℎ̂𝑠 ∈ A(ℎ𝑠 ) and ℎ̂𝑑 ∈ A(ℎ𝑑 ).
(5) Waypointing: Traffic is waypointed through one of the routers among {𝑟1, · · · , 𝑟𝑛} ∈ 2𝑅 in the original network if and only if traffic

is waypointed through one of the routers among {𝑟1, · · · , 𝑟𝑛} ∈ 2
A(𝑅)

in the anonymized network as well, with 𝑟𝑖 ∈ A(𝑟𝑖 ) for all
𝑖 = 1, · · · , 𝑛.

(6) Routing-loops: Traffic from ℎ𝑠 to ℎ𝑑 enters a routing loop in 𝐺 if and only if traffic from ℎ̂𝑠 to ℎ̂𝑑 enters a routing loop in 𝐺 as well.

Lemma B.1. If 𝐶𝐹𝐺 𝐹≃�𝐶𝐹𝐺 , then the anonymized network preserves reachability from the original network.

Proof. To see that reachability is preserved, we need to show that for any pair of hosts (ℎ𝑠 , ℎ𝑑 ) ∈ 𝐻 ×𝐻 , ℎ𝑑 is reachable from ℎ𝑠 if and only
if ℎ̂𝑑 is reachable from ℎ̂𝑠 , for some ℎ̂𝑠 ∈ A(ℎ𝑠 ) and ℎ̂𝑑 ∈ A(ℎ𝑑 ). Assume that 𝐶𝐹𝐺

𝐹≃�𝐶𝐹𝐺 .
(⇒) Fix arbitrary ℎ𝑠 and ℎ𝑑 and assume that ℎ𝑑 is reachable from ℎ𝑠 , then there exists a routing path 𝑝 = (ℎ𝑠 , 𝑟1, · · · , 𝑟𝑘 , ℎ𝑑 ) ∈ 𝐷𝑃 . By

functional equivalence, there exists an injective mapping 𝑓 , such that 𝑓 (ℎ𝑠 ) ∈ A(ℎ𝑠 ), 𝑓 (ℎ𝑑 ) ∈ A(ℎ𝑑 ), 𝑓 (𝑟𝑖 ) ∈ A(𝑟𝑖 ) for all 𝑖 = 1, · · · , 𝑘 , and
�̂� = (𝑓 (ℎ𝑠 ), 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑘 ), 𝑓 (ℎ𝑑 )) is a routing path in the anonymized network. Therefore, 𝑓 (ℎ𝑑 ) is also reachable 𝑓 (ℎ𝑠 ). Since ℎ𝑠 and ℎ𝑑
are taken arbitrarily, and 𝑓 (ℎ𝑠 ) ∈ A(ℎ𝑠 ), 𝑓 (ℎ𝑑 ) ∈ A(ℎ𝑑 ), this direction is done.

(⇐) This direction is symmetric to above since functional equivalence is an if and only if condition. □

Lemma B.2. If 𝐶𝐹𝐺 𝐹≃�𝐶𝐹𝐺 , then the anonymized network preserves path-lengths from the original network.

Proof. To see that path-lengths are preserved, we need to show that for any pair of hosts (ℎ𝑠 , ℎ𝑑 ) ∈ 𝐻 ×𝐻 , all routing paths from ℎ𝑠 to ℎ𝑑

are of length 𝑙 if and only if all routing paths from ℎ̂𝑠 to ℎ̂𝑑 are of length 𝑙 , for some ℎ̂𝑠 ∈ A(ℎ𝑠 ) and ℎ̂𝑑 ∈ A(ℎ𝑑 ). This is equivalent to
showing the contrapositive, that is, there exists a routing path from ℎ𝑠 to ℎ𝑑 not of length 𝑙 if and only if there exists a routing path from ℎ̂𝑠

to ℎ̂𝑑 not of length 𝑙 , with ℎ̂𝑠 = A(ℎ𝑠 ) and ℎ̂𝑑 = A(ℎ𝑑 ). Assume that 𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺 .

(⇒) Fix arbitrary ℎ𝑠 and ℎ𝑑 and assume that there exists a routing path from ℎ𝑠 to ℎ𝑑 of length 𝑘 + 2 ≠ 𝑙 , which we denote by 𝑝 =

(ℎ𝑠 , 𝑟1, · · · , 𝑟𝑘 , ℎ𝑑 ) ∈ 𝐷𝑃 . By functional equivalence, there exists an injective mapping 𝑓 , such that 𝑓 (ℎ𝑠 ) ∈ A(ℎ𝑠 ), 𝑓 (ℎ𝑑 ) ∈ A(ℎ𝑑 ),
𝑓 (𝑟𝑖 ) ∈ A(𝑟𝑖 ) for all 𝑖 = 1, · · · , 𝑘 , and �̂� = (𝑓 (ℎ𝑠 ), 𝑓 (𝑟1), · · · , 𝑓 (𝑟𝑘 ), 𝑓 (ℎ𝑑 )) is a routing path in the anonymized network. Clearly the length
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of �̂� is also 𝑘 + 2 ≠ 𝑙 . Since ℎ𝑠 ad ℎ𝑑 are taken arbitrarily, and 𝑓 (ℎ𝑠 ) ∈ A(ℎ𝑠 ), 𝑓 (ℎ𝑑 ) ∈ A(ℎ𝑑 ), this direction is done.

(⇐) This direction is symmetric to above since functional equivalence is an if and only if condition. □

Lemma B.3. If 𝐶𝐹𝐺 𝐹≃�𝐶𝐹𝐺 , then the anonymized network preserves black-holes from the original network.

Proof. 𝑛𝑒𝑥𝑡_ℎ𝑜𝑝 to destination host ℎ𝑑 on router 𝑟 is in the original network⇔ �𝑛𝑒𝑥𝑡_ℎ𝑜𝑝 to destination host ℎ̂𝑑 on router �̂� is in the

anonymized network. So if traffic sent from ℎ𝑠 to ℎ𝑑 is dropped because ℎ𝑑 is in the routing table of 𝑟𝑛−1 but not in the routing table of next

hop 𝑟𝑛 , in the anonymized network, traffic sent from ℎ̂𝑠 to ℎ̂𝑑 will also be dropped because the same traffic will pass router 𝑟𝑛−1, and ℎ̂𝑑 is in

the routing table of 𝑟𝑛−1 but not in the next hop 𝑟𝑛 . □

Lemma B.4. If 𝐶𝐹𝐺 𝐹≃�𝐶𝐹𝐺 , then the anonymized network preserves multipath-consistency from the original network.

Proof. If multiple paths 𝑝, 𝑝′ exist in the original network from ℎ𝑠 to ℎ𝑑 , and there exists some traffic reachable through 𝑝 and dropped

along 𝑝′, in the anonymized network, �̂� and 𝑝′ are both present in the dataplane, so some traffic will be reachable through �̂� and dropped

through 𝑝′. □

Lemma B.5. If 𝐶𝐹𝐺 𝐹≃�𝐶𝐹𝐺 , then the anonymized network preserves waypointing from the original network.

Proof. To see that waypointing is preserved, we need to show that traffic is waypointed through one of {𝑟1, · · · , 𝑟𝑛} ∈ 2𝑅 in the original

network if and only if traffic is waypointed through one of {𝑟1, · · · , 𝑟𝑛} ∈ 2A(𝑅) in the anonymized network as well, with 𝑟𝑖 ∈ A(𝑟𝑖 ) for all
𝑖 = 1, · · · , 𝑛. Assume that 𝐶𝐹𝐺

𝐹≃�𝐶𝐹𝐺 and take an arbitrary set R = {𝑟1, · · · , 𝑟𝑛} ∈ 2𝑅 .
(⇒) Assume that traffic is waypointed through some 𝑟 ∈ R, which means that there exists a path 𝑝 = (ℎ𝑠 , · · · , 𝑟 , · · · , ℎ𝑑 ) ∈ 𝐷𝑃 , including 𝑟
on its way. By functional equivalence, there exists an injective mapping 𝑓 , such that 𝑓 (ℎ𝑠 ) ∈ A(ℎ𝑠 ), 𝑓 (ℎ𝑑 ) ∈ A(ℎ𝑑 ), and 𝑓 (𝑟 ) ∈ A(𝑟 ), and
�̂� = (𝑓 (ℎ𝑠 ), · · · , 𝑓 (𝑟 ), · · · , 𝑓 (ℎ𝑑 )) is a routing path in the anonymized network. Clearly traffic would be waypointed through 𝑓 (𝑟 ) ∈ A(𝑟 ),
so this direction is done.

(⇐) This direction is symmetric to above since functional equivalence is an if and only if condition. □

Lemma B.6. If 𝐶𝐹𝐺 𝐹≃�𝐶𝐹𝐺 , then the anonymized network preserves routing-loops from the original network.

Proof. Some traffic sent from ℎ𝑠 to ℎ𝑑 enters a routing loop⇒ the chain of 𝑛𝑒𝑥𝑡_ℎ𝑜𝑝 points to a router it has already passed through.

As SFE conditions preserve the 𝑛𝑒𝑥𝑡_ℎ𝑜𝑝 of host destinations on each router, the corresponding routing loop exists in the anonymized

network. □

Theorem B.7. If 𝐶𝐹𝐺
𝐹≃�𝐶𝐹𝐺 , then �𝐶𝐹𝐺 preserves reachability, path-lengths, black-holes, multipath-consistency, waypointing, and routing-

loops from 𝐶𝐹𝐺 .

Proof. This immediately follows from Lemma B.1, Lemma B.2, Lemma B.3, Lemma B.4, Lemma B.5, and Lemma B.6. It concludes that

functional equivalence preserves all our defined routing utility properties and thus produces a usable anonymized network. □
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C Evaluation Results
Here we attach Table 3, present the full evaluation result of configuration utility(𝑈𝐶 ). As is analyzed in the paper, 𝑘𝐻 and 𝑘𝑅 has moderate

negative impacts on 𝑈𝐶 , thus leading the # of added lines goes up as they increase. FatTree-08 has zero added interface lines due to the

special structure of network (many subgraphs are isomorphism, and nodes share the same degrees).

Network, Parameters #Added Routing Protocol Lines #Added Filter Lines #Added Interface Lines # Total Lines

BICS, 𝑘𝑅=2, 𝑘𝐻=2 84 822 16 4250

BICS, 𝑘𝑅=6, 𝑘𝐻=2 144 987 160 4250

BICS, 𝑘𝑅=6, 𝑘𝐻=4 131 1408 96 5438

BICS, 𝑘𝑅=10, 𝑘𝐻=2 124 894 96 4250

Columbus, 𝑘𝑅=2, 𝑘𝐻=2 155 1820 8 7270

Columbus, 𝑘𝑅=6, 𝑘𝐻=2 162 1812 32 7300

Columbus, 𝑘𝑅=6, 𝑘𝐻=4 159 2317 32 8159

Columbus, 𝑘𝑅=10, 𝑘𝐻=2 179 1870 80 7440

CCNP, 𝑘𝑅=2, 𝑘𝐻=2 21 42 12 1503

CCNP, 𝑘𝑅=6, 𝑘𝐻=2 45 85 42 1696

CCNP, 𝑘𝑅=6, 𝑘𝐻=4 47 91 42 1706

CCNP, 𝑘𝑅=10, 𝑘𝐻=2 39 68 42 1587

FatTree-08, 𝑘𝑅=2, 𝑘𝐻=2 503 4742 0 9364

FatTree-08, 𝑘𝑅=6, 𝑘𝐻=2 433 1859 0 6341

FatTree-08, 𝑘𝑅=6, 𝑘𝐻=4 512 10004 0 15004

FatTree-08, 𝑘𝑅=10, 𝑘𝐻=2 385 1313 0 5699

USCarrier, 𝑘𝑅=6, 𝑘𝐻=2 341 7334 32 19419

Table 3: # of lines modified in each component by ConfMask, compared to the total number of lines in configuration files.
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